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Abstract

This report presents the development of an assistant-based visualization

system (or "visualization assistant"), based on a data-centered framework,

that supports the production of effective graphics for scientific visualization.

The framework is composed of a data model, a user model and a machine

model that represent the data, the scientific user and the software/hardware

environment. Each model contains knowledge related to the production of ef-

fective visualizations, including rules from perception, graphic design and the

scientific domains. The goal of this research is twofold: 1) to present scientists

with a productive visualization tool that allows them to concentrate on the

task at hand, and 2) to generate effective visual representations that aid in in-

terpretation. Both of these goals are accomplished by taking into account the

data analysis task, the type of data to be displayed, the capabilities and pref-

erences of the scientist, software/hardware characteristics, and visualization

knowledge. This report describes the framework for the visualization assis-

tant, the design process, the prototype system, and areas for future research.

IThis report has also been published as a doctoral dissertation through the University
of Colorado, Boulder, Department of Computer Science, December 1994.
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Scientific visualization is an enabling tool that assistsscientistswith the
visual analysisof large datasetssuchas thoseproduced by computer simu-
lations. Many visualization systemsare currently available to help scientists
with their data analysis tasks, eachproviding different functionality for sci-
entists to usewhen analyzing their data. However,along with functionality
comescomplexity and manyscientistsareunwilling to spendmuch time learn-
ing to usevisualization systems.As a result, scientistseither usevisualization
systemsin limited waysor in a trial-and-error manner,neither of which is very
productive. To compound this problem, scientistsunfamiliar with visualiza-
tion conceptsmay createrepresentationsthat are uselessor misleading.

This researchpresentsthe developmentof an assistant-basedvisualiza-
tion system(or "visualization assistant"), basedon adata-centeredframework,
that supportsthe rapid production of effectivegraphicsfor scientificvisualiza-
tion. The frameworkiscomposedof a data model,a usermodeland a machine
model that representthe data, the scientific userand the software/hardware
environment. Eachmodel containsknowledgerelated to the production of ef-
fective visualizations, including rulesfrom perception,graphic designand the
scientific domains.The goalof this researchis twofold: l) to presentscientists
with a productive visualization tool that allows them to concentrateon the
task at hand, and 2) to generateeffectivevisual representationsthat aid in in-
terpretation. Both of thesegoalsare accomplishedby taking into account the
data analysistask, the type of data to bedisplayed,the capabilitiesand pref-
erencesof the scientist, software/hardwarecharacteristics,and visualization
knowledge.

To demonstratethe feasibilityof this approach,a prototype visualization
assistant called MDV, or MultiDisciplinary Visualizer, was developedat the
Numerical AerodynamicSimulation (NAS) SystemsDivision at NASA Ames
ResearchCenter. The applicationdomain wascomputational aerosciences,in-
volving multidisciplinary data from computational fluid dynamics and struc-
tural dynamics. The system wasdesignedwith the close involvementof sci-
entists performing the simulations. This dissertation presentsthe framework
for the visualization assistant, the designprocess,the prototype system,and
areasfor future research.
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CHAPTER 1

INTRODUCTION

Scientific visualization is a useful, but complex, tool for scientific data analysis.

Due to the complexity in understanding and using scientific visualization, the

benefits of scientific visualization are not completely realized. As a result, data

analysis productivity is not maximized.

This thesis describes the development of an assistant-based scientific vi-

sualization system, or a "visualization assistant". A visualization assistant

guides the scientist with the process of designing and generating effective vi-

sualizations of his/her data. The data analysis process can be more productive

with the help of a visualization assistant.

Productivity is enhanced in two ways. First, generating visualizations is

less time-consuming because the scientist is not required to learn complicated

visualization systems. As a result, the scientist can concentrate his/her atten-

tion on the task at hand and thus, be more productive. Second, more effec-

tive visualizations are designed by taking into account visualization knowledge

from perception, graphic design, and the scientific domain. Designing a more

effective visualization may aid in interpretation and lead to a faster conclusion.

The research presented in this thesis is a contribution to the design and

development of visualization systems. The contribution comes in two parts: a

high-level framework and a user-tested implementation. In the design of the

visualization assistant, the development of a high-level, structured framework

is required to define the necessary information sources that must comprise such

a system. The development of this framework provides a structure from which

systems can be built and expanded. This structured approach to visualization,

as opposed to current ad hoc approaches, is a step towards understanding the

visualization process as a whole.

A user-tested prototype system has been built based on this framework.

Feedback from scientists has been obtained regarding the visualization assis-

tant approach and its place in the development of next-generation visualization

systems. Implementation considerations have been evaluated and these results

are presented so that future systems can take advantage of the information

gained from this experience.

The framework presented in this thesis consists of a data model, a user

model, a machine model and a knowledge base. This framework is original in

that it is the first to combine several of the key information sources necessary

for the design of effective visualizations. This thesis asserts that the above

specified information sources are necessary, together with the data analysis

goal of the scientist, to create an effective visualization assistant. In addition,



scientists were involved throughout the design process, leading to a prototype

system designed based on user feedback. Previous research did not incorporate

a great deal of participation from end users.

Concepts from the database and artificial intelligence (AI) fields were

used in designing the visualization assistant. The technology from these fields

is very promising and can be applied to many different applications. The

database and AI concepts used in this thesis were helpful in modeling and

implementing the visualization assistant. However, these technologies were

only used to support the design of the visualization assistant. The use of these

technologies is not intended to present significant contributions to either the

database or AI fields.

Scientific visualization and its role in the data analysis process is pre-

sented in the next section. The difficulties faced by scientists using current

systems are described and possibilities for next-generation visualization sys-

tems are investigated. The following section provides a high-level introduction

to the thesis project. The final section on related work identifies key issues

and shortfalls of research in this area.

1.1 Scientific Visualization

Computer simulations of physical phenomena, such as fluid flow over

a structurally deforming aircraft wing, are producing increasingly larger and

more complex data.sets. To obtain insight into the phenomena modeled in

these data.sets simply by studying the numbers is difficult, if not impossible.

The purpose of computing is insight, not numbers. Richard Hamming[g1].

The technology to graphically display scientific data is essential to provide this

insight. This technology, termed scientific visualization [45], takes advantage

of the powers of the human visual system in interpreting scientific data. The

human visual system possesses two characteristics that make scientific visual-

ization such an effective tool. First, the large bandwidth of the human visual

system aids in the rapid browsing of large amounts of scientific data. Second,

the visual system is proficient at detecting pattern and structure. This skill

can be applied to scientific data. Because of these characteristics, scientific vi-

sualization can assist the scientist with the analysis of the large and complex

datasets currently being produced.

Scientific visualization is an important tool in the scientist's workbench.

It can serve many roles, including:

* A debugging tool for developing simulation software,

• An analysis tool for examining, correlating and comparing datasets,
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• A validation and verification tool for checkingdata correctness,

• A communication tool for conveyingconceptsand phenomenabetween
scientists,and

• A presentationtool for presentingwork to the researchand funding com-
munities.

1.1.1 Current Visualization Systems

The utility of scientific visualization has been demonstrated by its gen-

eral acceptance by the scientific community. This acceptance is evident from

the many visualization systems that exist to analyze data from applications

such as fluid dynamics and medicine [4, 42, 63, 68]. Each system possesses

the functionality to explore data from one or more of the above mentioned

applications. However, along with greater functionality comes increased com-

plexity and many scientists are unwilling to spend much time learning to use

visualization systems. As a result, scientists either use visualization systems in

limited ways or in a trial and error manner, neither of which is very productive.

The complexity of current visualization systems has caused many scientists to

avoid using technology that could potentially be very valuable to them.

Not only is time required in learning to use visualization systems, but

knowledge about visualization technology is beneficial. If a scientist does not

have a background in visualization, he/she could design images that lead to

confusion or misinterpretation. This background includes knowledge about

the different types of visualization mappings available and which mappings fit

which types of data. A visualization mapping, or visualization technique, is

a method for transforming data into a visual representation of the data 2. A

visualization is the final image produced by a mapping.

A scientist often seeks assistance from a visualization expert to help

select and apply a visualization mapping. If such an expert is not available,

the scientist must design and generate his/her own visualizations. The process

of designing and generating a visualization of data from a computational fluid

dynamics (CFD) simulation is described in the following sample scenario.

Data Analysis Scenario

A fluid dynamicist is interested in exploring a velocity vector field

computed over the wing of an airplane. The fluid dynamicist must:

_Examples of visualization mappings include contour lines, color contoured (or col-

ormapped) surfaces, and vector arrow plots.

3



1. Determine what visualization mappings are useful in viewing velocity
fields,

2. Find and learn to usethe softwarethat implementssuchmappings,

3. Correctly selectfrom the many options to enhancethe image suchas
color, lighting, viewpoints,etc.

A moreconcretescenariodescribesthe steps necessary to perform this

task using the fluid dynamics visualization system FAST (Flow Analysis Soft-

ware Toolkit [4]).

Data Analysis Scenario using FAST

1. Start Up: Run the FAST program.

2. Read Data: Read the desired datasets into FAST using the File I0

module. This step involves a minimum of five button presses (with ad-

ditional button presses if the file format is more complex), performed in

one window.

3. Calculate Data: Open the Calculator module and compute the velocity

field from the existing data fields. This step involves opening another

window, and performing a minimum of one button press.

4. Designing the Visualization: Designing the visualization first involves se-

lecting the appropriate visualization mapping. Selecting the appropriate

mapping requires general visualization knowledge, knowledge about the

FAST system and its available mappings, knowledge about standard vi-

sualization mappings used in the physical domain and knowledge about

the characteristics of the data. Particle traces 3 are selected because they

are useful in depicting fluid dynamics velocity vector fields.

5. Generate the visualization: The simplest implementation involves gen-

erating a wireframe mesh of the geometry (using the Surfer module)

and creating several particle traces (using the Tracer module). Selecting

seed points 4 for the particles is somewhat of a trial and error process,

requiring the user to adjust sliders and viewpoints to understand the

relationships between the geometry and the particles. Performing this

visualization mapping requires opening two windows, five button presses

and the adjustment of five sliders. The number of button presses and

slider adjustments can increase greatly due to the trial and error process

of placing seed points.

SA particle trace (also called a streamline in a time-independent flow field) is the path

a particle travels in the computed flow (velocity) field. Particle traces provide information

about the directionality of the flow and structure in the flow field.

4A seed point is the originating position for the particle trace.
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. Adjust visual attributes: Completing the design of the visualization re-

quires adjusting visual attributes such as lighting, rendering style (i.e.

lines versus polygons) and color. Rendering attributes must be adjusted

for each component of the visualization, namely, the wireframe mesh

and the particle traces. This step is often optional, since default visual

attributes are typically sufficient.

The resulting visualization is shown in figure 1.1. The complexity of the

visualization environment is depicted by the many panels, buttons and sliders

the scientist must use in generating a visualization. However, the FAST system

is very functional and provides the scientist with many different tools to use

for data analysis.

The process of generating visualizations can be complicated and time

consuming, as shown in the previous example. The rapid generation of visual-

izations is important due to the exploratory nature of scientific data analysis,

where visualizations are often viewed briefly and then discarded. If too much

time is required to generate a visualization, including both the time to specify

the visualization mapping and the time to compute and render the visualiza-

tion, scientists may abandon the system. Scientists need a system to support

the exploratory process, allowing them to generate images easily and rapidly

so they may focus on their scientific problem.

1.1.2 Next Generation Visualization Systems

Research in human/computer interaction (HCI), coupled with represen-

tational techniques from artificial intelligence and database theory, has shown

promise in helping to reduce the complexity of sophisticated software systems.

The goal of research in HCI is to develop user interfaces that hide software

complexity, providing a tool that allows the user to specify his/her task in a

more intuitive manner.

Assistant-based systems [25], intelligent agents [18], and intelligent user

interfaces [64] are related user interface concepts developed to guide the user

through complicated environments. The user interface, enhanced with knowl-

edge about the given application domain, provides the user with advice and

assistance. As a result, users can perform their tasks in a more productive and

effective manner. The user never forfeits control of the system. Rather, the

user benefits from the knowledge contained in the system, accepting and using

the information or choosing to ignore it. The cooperative problem solving ap-

proach places emphasis on using knowledge-based representational techniques

to augment and empower human users, rather than replace them.

The above-mentioned user interface approaches can help manage the

complexities involved in scientific visualization. The ability to express data

5



Figure 1.1: The FAST visualization system.



queries more intuitively can make visualization tools easier to use for the av-

erage scientific user. For example, the visualization in the previous section

might be generated with the query: "Explore the velocity field over the wing

in dataset XYZ." This query is answered by the MDV (MultiDisciplinary Vi-

sualizer) visualization assistant described in this thesis. The scientist inputs

the query via a menu-based interface and MDV selects an appropriate visual-

ization and renders it to the screen. The scientist has the ability to interact

with the visualization, changing viewing parameters and the position of the

streamlines with the mouse. If interested, the scientist can click on the vi-

sualization and a popup menu will appear which describes the attributes of

that visualization. The scientist can modify these attributes as desired. The

resulting image is shown in figure 1.2.

Several benefits arise when providing assistance to scientists with their vi-

sualization task. First, scientists are often unaware of the constraints imposed

by computer software, hardware and the human visual system when designing

a visualization. If this information is incorporated into the assistant-based

system, the resulting visualization can be better suited for the task at hand.

Second, the amount of time spent learning how to use visualization software

and generating visualizations is reduced, thus giving scientists more time to

dedicate to their research.

The need for such a system is expressed in the recent report by the

Office of Naval Research Advisory Panel on Scientific Visualization [56]. The

report, entitled "Research Issues in Scientific Visualization" cites the need

for user interfaces to scientific visualization systems that make visualization

tools more productive by incorporating information about the data, the user,

system characteristics and the visualization task. The report mentions the

development of "visualization assistants" that can help the user to quickly

design and generate meaningful visual representations.

1.2 Research Overview

Based on the background and motivation described in the previous sec-

tions, research in developing a visualization assistant was performed in this

thesis. An overview of this research, describing its basic premise and approach

is presented in the following sections.

1.2.1 Thesis Statement

For effective and productive data analysis, a visualization assistant must

contain information about:

• the data to be visualized,

7
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• the user and his/her data analysis task,

• the hardware and software environment,

• the application domain,

• visual perception and graphic design.

Determining what constitutes an "effective" or "useful" visualization is a

difficult task. This has been approached by researchers by studying perception

and graphical presentation. For example, Mackinlay [43] defined the words "ef-

fective" and "expressive" in attempting to describe a useful visualization. An

"expressive" visualization fully encodes the data attributes by presenting all

the relevant (and only the relevant) information to the user. The complemen-

tary word "effective" suggests that the technique exploits the capabilities of

the output medium and human visual system, leading to a correct and quick

judgement of the data.

This thesis asserts that several information sources are required to de-

velop effective and expressive visualizations. The information sources iden-

tified by this research project include the data, the user, the hardware and

software environment and expertise from the individual scientific domains, per-

ception, and graphic design. Other sources of information may be necessary,

but were not identified in this thesis. A data model organizes the data into

an appropriate form so that information about the data and its characteristics

can be accessed easily. A user model describes the goals and characteristics of

the user so the system can better adapt to his/her requirements, abilities and

preferences. A machine model is necessary to determine how each aspect of

the computer, both software and hardware, impacts the resulting visualization

and interaction techniques. A knowledge base contains principles from per-

ception, graphic design, and expertise in the scientific domains. Information

in the knowledge base can be coupled with information in the data, user and

machine models, when determining an effective and expressive visualization.

This thesis also asserts that the data analysis task of the scientist plays

an important role in the visualization assistant. Different tasks performed on

the same data, by the same user and on the same hardware system can require

different visualizations. For example, if the user (a scientist) is interested in

accomplishing a task such as debugging a simulation, the visualization pre-

sented to him/her would be different from the scientist who was interested in

generating a visualization for publication. MDV considers the data analysis

task in the design of a visualization.
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1.2.2 Approach

A visualization assistant was developed to help scientists with the rapid

generation of effective and expressive visualizations. The visualization assis-

tant is based on a framework that consists of a data model, a user model, and

a machine model (shown in figure 1.3). The framework also contains a knowl-

edge base of visualization information. The knowledge base is not a single

entity per se. Instead, knowledge is incorporated into the relevant information

model. Information in the framework is used by the system in designing a

visualization based on a visualization specification (or query) presented by the

scientist.

The three models were selected as the primary sources of information

necessary for designing effective visualizations. The knowledge base provided

additional information from perception, graphic design and the scientific do-

mains. The data model represents the data contained in the scientific domains.

The data for each domain contains the geometry of the simulated objects, the

data variables that have been calculated in the simulation, and the attributes

and relationships of the data variables.

To complement the data model, the user model describes the domain sci-

entist and his/her characteristics. These characteristics include the scientist's
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background,preferences,and physiologicalcapabilities. Backgroundinforma-
tion about the scientist includesinformation suchashis/her scientific domain
and computer and visualizationexpertise. Preferencesinclude a favorite color
table or a preferencefor a particular style of interaction (i.e. textual versus
menu-based).Physiologicalcapabilities include factors suchas a color blind-
nessthat might affect interpretation of color-codedimages,or difficulty with
fine-motor coordination that might affectusing a mousefor direct manipula-
tion.

The machinemodel incorporatesinformation about the resourcesavail-
able in the scientist's computingenvironment. This information includesthe
characteristicsand limitations of the software and hardware available for gen-

erating visualizations. For example, if the output is to be generated on a color

printer, various color choices might be avoided because they do not reproduce

well.

The knowledge base contains principles from perception, graphic design,

and the individual scientific domains. This knowledge is combined with the

information in the data, user and machine models, providing assumptions that

guide with the selection of visualization mappings and their visual attributes.

For example, if the scientist is interested in viewing a fluid dynamics velocity

field, an assumption contained in the data model suggests using a particle

trace because velocity is a vector field. If the scientist currently performing

the data analysis is red-green colorblind, an assumption contained in the user

model suggests using an appropriate colortable. If the output medium selected

is a black and white printer, an assumption contained in the machine model

suggests using a black contour lines and a white background.

Visualization knowledge is stored in the individual models and is ac-

cessed by the system based on the data analysis task of the scientist. The

task is represented by a "visualization specification", which contains two com-

ponents. The first component specifies the data the scientist wishes to view.

This component includes selecting subsets of the data and field variables of

interest. The second component identifies what data analysis task the scientist

is interested in performing. MDV represents the task component by providing

high-level task variables such as "debugging" and "presentation".

This framework defines the components that are critical for a visualiza-

tion assistant. However, each component in the framework is an individual

research project. As a result, a simplified version of the overall framework is

studied in this thesis. The simplified version allows a thorough study of the

principal component of the framework, the data model, and how the map-

ping of data to visualizations is performed using information in the knowledge

base. The data model was selected as the main and driving component of the

visualization framework because the characteristics of the data define what
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visualization mapping should be applied to the data. The information in the

user and machine models is important in the selection of this mapping. How-

ever, the user and machine models only support and refine the mappings from

data to visualization. Their impact can be studied as a later research project

in the development of this visualization framework.

1.2.3 Application Domain

The visualization assistant was developed for visualizing computational

aerosciences (CAS) data generated at the NASA Ames Research Center. Re-

search in computational aerosciences involves the coupled simulation of the

several physical disciplines that affect flight characteristics of next generation

aeronautic vehicles, such as the High Speed Civil Transport (HSCT). These

multidisciplinary simulations model disciplines such as fluid dynamics, struc-

tural dynamics, thermodynamics, and propulsion.

Many challenges are posed by multidisciplinary simulations in compu-

tational aerosciences. As the simulation technology evolves, supporting tools

must also evolve to assist the simulation scientists. One of these tools is

visualization, which assists scientists in debugging, exploring, analyzing and

presenting simulation results.

Multidisciplinary simulations produce complex, heterogeneous datasets.

The data is stored in different data formats, with different grid qualities and

different physical field variables (i.e. velocity, pressure, deformation). To

create a productive environment in which supporting tools do not hinder the

scientist, implementation details should be hidden from the scientist. Data

management and user interface studies are critical components to address these

challenges and are addressed in this thesis.

For the prototype implementation described in this thesis, the data

model characterizes datasets in multidisciplinary (fluid dynamics and struc-

tural dynamics) simulations in progress at NASA Ames [50]. The simplified

user model characterizes the computational scientists involved in the project,

their preferences and working environment. The simplified hardware model

describes the scientists' working environment at NASA Ames. The knowl-

edge base contains information about visualization mappings, perceptual and

graphic design considerations and knowledge from fluid dynamics and struc-

tural dynamics domains.

The end product of this work is a prototype visualization assistant. The

scientist makes a query to the system selecting data objects, physical field vari-

ables of interest, the desired output medium and his/her visualization task.

The system processes this information and presents a visualization to the sci-

entist, rendered and annotated. The scientist then explores the data via direct
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manipulation. "Popup menus", that are custom built to suit the attributes

of the chosen visualization mapping, provide the scientist with additional in-

formation and functionality. For example, the scientist may want to know

the properties of the data or why a particular visualization mapping was se-

lected. The scientist may also modify some attributes of a visualization, such

as color choices, using the popup menus. Finally, the scientist may return to

a more traditional user interface at any time if they are not satisfied with the

information provided by the assistant.

1.2.4 Design Philosophy

The design philosophy for this project was that of participatory, iterative

design. Past experiences have shown that software projects are more successful

when user input is solicited throughout the development cycle [9, 47].

Participation from the scientist provides valuable input to the direction

of the project and influences the design of the user interface. Scientists' in-

put was continuous throughout the project lifecycle through mechanisms such

as interviews, informal meetings and demonstrations. Interaction with the

scientist was also emphasized to obtain domain knowledge for the knowledge

base.

The iterative process allowed for a continuous, step-by-step improvement

over the project development cycle. The scientist had opportunities to suggest

improvements on a usable prototype system throughout the design cycle.

1.3 Related Work

Visualization is essentially a mapping process, taking data attributes

and mapping them into visualizations [19, 33]. Data analysis systems are

emerging that perform this mapping based on principles of perception and

graphic design. Feiner [23] calls these systems "graphically articulate" because

they attempt to convey the information in the data effectively and expressively.

Models and systems have recently been developed with this goal in mind

[2, 14, 20, 43, 53, 60, 58, 70]. The applications vary in each of these research

projects, from the presentation of charts and graphs to the presentation of

images. However, they share a common goal to make the data analysis pro-

cess more intuitive and productive. Researchers in this area have recognized

the importance of the several disciplines necessary for the creation of effec-

tive graphical presentations, namely, computer graphics, data management,

graphic design, perceptual psychology and user interface design. All of these

researchers strive to define the components of the graphic design process, view-

ing current ad hoc methods as unacceptable for future graphics and visualiza-

tion systems.
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The project described in this thesis attempts to build upon the knowl-

edge gained from these research projects. It expands on previous research

projects by incorporating a structured framework that deals with data, user

and machine characteristics in a single system. MDV takes into account these

information sources as well as knowledge from perception and graphic design

in producing a visualization. MDV also queries the scientist for his/her data

analysis task. Task information is essential in order to design a visualization

that meets the particular data analysis goal of the scientist.

The following subsections present a sampling of this work. The subsec-

tions are divided into four categories that represent a certain emphasis with

respect to automated or assistant-based data analysis systems. Although each

project addresses each of the focii to some degree, they are categorized by

their main contribution toward the development of graphically articulate sys-

tems. Each project is summarized, followed by a brief statement of the lessons

learned from the project and how the project differs from the current work

presented in this thesis.

1.3.1 Focus on Conceptual Models

Haber and McNabb [30] presented the concept of a "visualization idiom",

a geometric abstraction of the data obtained from a computer simulation. De-

signing an effective visualization idiom requires converting the raw data into a

format that can be understood by the human visual system while maintaining

the integrity of the data. Three transformations occur in the process of trans-

forming raw data into a visualization idiom. The first transformation involves

manipulating the data, performing operations such as subsetting, filtering,

or smoothing. The next transformation involves selecting the visualization

mapping. Choosing the correct mapping is important so that a clear inter-

pretation can lead to a scientific conclusion. The final transformation renders

the visualization mapping. All the information in the transformation process

is necessary to understand the meaning of the resulting visualization idiom.

Haber and McNabb state that idioms "should be based on intuitive analogies

between familiar objects and the physical abstractions used in the simulation,"

so that understanding comes readily.

Haber and McNabb lay the foundation for the mapping process from

data to visualization. In addition, they establish the need for selecting ap-

propriate mappings based on the characteristics of the data. Their work is

conceptual in nature and they do not go beyond the definition of a "visualiza-

tion idiom" to develop an architecture or prototype system. Their emphasis is

only on the data and they do not take into consideration the user and machine

characteristics in the design of effective and expressive visualizations.
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Robertson[53] stated the needfor a methodologyfor guiding the choice
of visualizations. He developedvisualization guidelinesby observing natural
scenesin the world around us. Robertsonasserts that human visual sys-
tem containsvisual mechanismsto understandour three-dimensionalworld,
so it seemslogical to visually representdata using physical properties found
in natural scenes.Robertson'smethodologymatchesdata characteristicsand
data interpretation aims (data analysis task) to two-dimensionai and three-

dimensional scene parameters. This matching is performed by a human oper-

ator, but with potential for automated processing. His approach is different

from other techniques in that he has a complete and coherent scene in mind

before the mapping stage begins. By restricting the user to predefined scenes,

the natural scene paradigm attempts to provide an appropriate mental model

of the information displayed.

De Ferrari [54] expanded Robertson's original paradigm to include a more

elaborate data model. In addition, she proposed the use of a "visualization

specification" as input to the visualization system, which consisted of user

directives and user interpretation aims. The goal of this work was a framework

and a system that automatically generated visualizations.

Robertson's work also details the necessity for selecting appropriate vi-

sualizations based on the characteristics of the data in order for intuitive in-

terpretation by the scientist. The natural scene paradigm is a methodology

by which the mapping process can be determined. Robertson developed a

prototype system based on the natural scene paradigm. De Ferrari's work

was important in defining the need for an explicit data model and the user's

goal-related input. Requirements for the data model were specified but a data

model to support their automated system was not developed. In addition,

neither Robertson nor De Ferrari cite the need to explicitly model user and

machine characteristics in designing an effective visualization. However, the

concepts and specifications developed in this work were very influential to

research in the area of automated or assistant-based visualization tools.

Wehrend and Lewis [70] describe each visualization process by two di-

mensions: the attributes of the information to be displayed (objects) and the

specific perceptual task to be performed (operation) on the resulting images.

The finite number of data attributes and the finite number of perceptual tasks

define a two-dimensional matrix in which each element contains expressive

and effective examples of visualizations. If more than one tuple (objects, op-

eration) is to be represented in the same display, the user is responsible for

setting priorities for the composition of representations.

Wehrend and Lewis's work is a categorization of visualization techniques

based on data attributes and perceptual tasks. This work was very valuable

because it identified a subset of basic data attributes and perceptual tasks
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important for visual data analysis. In addition, it provided representative
mappingsfor each (objects, operation) tuple. These representative mappings

can be referenced when designing a visualization given data attribute (object)

and task (operation) information. Wehrend and Lewis did not attempt to

encode this knowledge in the development of a visualization system nor did

they address user and machine characteristics.

1.3.2 Focus on Relational Information Display

Mackinlay [43] developed APT (A Presentation Tool) to automatically

generate graphical presentations of relational information. The model is de-

scribed by data, task, and user directives. Based on a description of the

information and task, APT defines evaluation criteria and is able to compose

multiple items and relations into one effective display. Mackinlay uses compo-

sition rules to define appropriate combinations of simple graphics primitives

in the generation of representations. To map from an internal representa-

tion to displayable images, evaluation criteria such as importance (ranking of

tasks), expressiveness (encoding of data attributes), and effectiveness (psy-

chophysical principles) are used. Although restricted to relational data and

two-dimensional charts, Mackinlay's work is a foundation for complex visual-

ization systems aiming toward automating the design of graphical presenta-

tions. Mackinlay agrees that additional work is necessary in developing auto-

mated presentation tools for three-dimensional data, and automated tools for

extracting and interpreting features in the data.

SAGE, developed by Roth and Mattis [58], is focused on the presentation

of relational data using the 2D static displays found in business and statistical

packages. Data characteristics are used in SAGE to create useful graphical

displays. These characteristics describe the semantic 5 and structural proper-

ties of the data relevant to graphical design. For example, the nature of the

ordering relationship among a dataset's elements is an important character-

istics when choosing a graphical technique. Datasets may be categorized as

quantitative 6, ordinal 7 or nominal s. Based on this data characterization, dif-

ferent graphical techniques are selected to convey the information in the data

in the most appropriate manner. SAGE also addresses the role of application's

5Semantic properties are those that reflect the meaning of the data.

SQuantitative data is ordered numerically. Data from computer simulations is considered
quantitative.

_Ordinal data is ordered by rank only. For example, the days of the week represent an
ordinal dataset.

SNominal data is unordered. For example, the different automobile manufacturers (i.e.
Ford, Chevrolet, etc) represent a nominal dataset
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or user's goals in designing effective graphical displays. The data analysis goal

affects the effectiveness of a graphical technique.

Recent work by the developers of SAGE [57] has produced new paradigms

for establishing collaboration between the user and the automated design sys-

tem. The SAGEBRUSH system allows the user to create a rough sketch of

a graphic design using a palette of primitives and partial designs. The sys-

tem then improves on this design, taking into account semantic and syntactic

qualities of the data. SAGEBOOK is an interface that provides users access

to a catalog of previously designed images that can be applied to their data.

SAGEBRUSH and SAGEBOOK are built on the foundation created by the

original SAGE project.

Research performed by Mackinlay and Roth was intended for graphical

presentations of relational information. Their systems were not oriented to-

wards scientific visualization, but rather the development of charts and graphs.

However, a great deal of overlap between relational information display and

visualization occurs. Lessons to be learned from the work of Mackinlay and

Roth include the representational techniques used to describe data as well as

the methodology used in designing a visual representation. This can be ap-

plied directly to the development of automated or assistant-based tools for

visualization.

1.3.3 Focus on Task Analysis

Casner's work [14] on BOZ establishes the necessity to incorporate the

user's task in designing a graphic presentation, stating that the utility of any

presentation is a function of the task it is being used to support. BOZ's task-

analytic approach begins with a task and a description of logical operators

that are necessary to perform the task. BOZ examines each logical opera-

tion and determines what information is required to perform the operation.

The key step in BOZ's approach is replacing these logical operations with less

effortful perceptual operations. By replacing logical operations with percep-

tual operations, the use of human information processing capabilities can be

optimized.

Beshers and Feiner's work on the AutoVisual project [7] also deals with

the graphic presentation of relational information. It is based on their earlier

project, n-Vision [22], in which multivariate data can be analyzed in a hier-

archical manner. The user specifies his/her visualization task and the system

generates an interactive virtual world appropriate for the task. AutoVisual

uses a two-part task specification composed of task operators and task se-

lections. Task operators represent fundamental cognitive judgements to be

made by the user, such as exploration, directed search or comparison. Task
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selectionsspecify subsetsof a relation and the data of interest.
Work by Casnerand Beshersand Feineris alsogearedtoward relational

information display. Lessonsto be learned from their work include the im-
portance of the task in designinga visualization. Their evaluation of task
representationis valuableand transferableto scientific visualization.

1.3.4 Focus on Scientific Visualization

The VISualization Tool Assistant (VISTA) [61] is a system, developed by

Senay and Ignatius, that designs visual representations automatically. VISTA

emphasizes the mapping of data attributes to primitive visualization tech-

niques, which encode one dependent and up to four independent variables.

The synthesis of visualization mappings takes place in three steps. The first

step involves decomposing the data so that each element can be represented by

a single visualization primitive technique. The second step involves using rules

of effectiveness and expressiveness to find the proper visualization technique

for each data component. A search space of primitive visualization techniques

is organized during this step. VISTA then searches this space until it finds

a visualization technique that can express a given relation and that has not

already been used to visualize another relation. In the final step, primitive

techniques are combined to form a composite visualization by applying the

appropriate composition rules. The user is able to interactively modify cer-

tain attributes of the visualization without causing inconsistencies in the final

design.

Research by Senay and Ignatius has been very valuable, compiling an ex-

tensive collection of visualization-related rules as well as developing a method-

ology for visualization design. Their work does not address data, user and

machine characteristics simultaneously in the design of visualizations. How-

ever, they discuss how the user and the task at hand are involved in designing

visual representations [62]. Senay and Ignatius developed a prototype system,

although the design time for creating a visualization using this prototype is

often prohibitive. They provide little information on user feedback, so it is not

known if the system has been tested by scientists.

Rogowitz and Treinish's [55] rule-based architecture contains visualiza-

tion rules that the user invokes explicitly. Rather than building an autonomous

system, Rogowitz and Treinish consider it a more feasible approach to allow

the user to apply rules and consider the various paths, selecting those most

relevant. These rules provide guidance on the selection of visualization pa-

rameters based on rules from human vision, cognition and color theory. If

selected, the rules constrain the way in which the data is presented. The rule-

based architecture contains a taxonomy of data structures that characterize
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features of the data and a taxonomy of visualization strategies that are based

on principles of perception and cognition. The rules provide the link between

the two taxonomies, designing visualizations matched to the capabilities of the

user.

Rogowitz and Treinish's project requires the user to select and apply

rules of perception to the design of visualizations. Their system does not se-

lect and render visualizations for the user, rather, it supplies the user with

rules they can then apply to their situation. They note the need for a compre-

hensive data model that describes the data characteristics, but do not mention

user and machine characteristics and how they influence the selection of vi-

sualizations. In addition, because the user is responsible for selecting the

visualization mapping, task specification is not a component of their system.

Ahmed, Wanger and Kochevar [3] developed an Intelligent Visualization

Subsystem (IVS) that uses a knowledge-based system to help users construct

visual representations of Earth science data. A data model is a necessary

component of the architecture, managing the heterogeneous datasets obtained

from the application domains. The IVS knowledge-based component contains

knowledge about the data model, the application domain, visual perception,

and the characteristics of the output medium. The IVS uses information in

the knowledge-base, together with a high-level task specification, to select

a visualization mapping. The task specification requires the user to select an

operator and a list of fiber bundle domains 9 upon which to operate. The initial

three task operators incorporated into the system include select, search, and

correlate. The task operator chosen is used to distinguish which visualization

mapping is most appropriate. The knowledge base also contains information on

how to build and render data-flow networks in AVS (Application Visualization

System), once a visualization mapping is selected. Future work will involve

incorporating information about the output medium and the user.

The IVS project is the most similar to the MDV project. Ahmed, Wanger

and Kochevar's work, which is ongoing, notes the importance of data model

in the design of a visualization assistant. The data model they have selected

is the Fiber Bundle data model, which does not incorporate data semantics

directly with the data. Rather, semantic information about the data is stored

separately. This is different from the approach in this work, where semantic

information is expressed in the data model together with the data it represents.

The close association of data syntax, data semantics and data values in the

MDV system provides a more intuitive representation of the data.

IVS developers also acknowledge the need to specify the data analysis

9The fiber bundle [12] model is used to represent the complex, geometrical relationships
found in scientific data. For a further explanation of the fiber bundle model, see Section 3.1.1.
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task for effective visualization. As a result, a query to the IVS system includes

the specification of a data analysis task. The task operators used in the IVS

(select, search and correlate) are different from the task operators in MDV

(debug, explore, analyze and present.) The difference in task operators is

due in part to the difference in domains. The IVS supports Earth science

data analysis. The task operators in the IVS reflect typical tasks the Earth

scientist might specify for their data analysis. In the MDV system the tasks are

based on typical usage scenarios scientists working on CAS simulations might

encounter. Although both sets of task operators could be applied to both

applications, it is evident that each application domain comes with its own

domain-dependent set of task operators. Thus, domain-dependent information

is important in determining a task dialogue for a visualization assistant.

Finally, in comparison with the MDV project, the IVS project does not

incorporate user or machine characteristics in the design of visualizations.

However, the IVS project acknowledges the importance of these characteristics

in designing a visualization and plan on incorporating user characteristics in

the future. Information on user feedback is not provided, so it is not known if

the IVS system has been used by scientists.

1.4 Summary

This thesis presents work in the development of a visualization assistant

(MDV) for use in multidisciplinary computational aerosciences. MDV is a user

tested system for assisting scientists with data analysis. This work is unique in

that it establishes a framework for incorporating the several different informa-

tion sources necessary for designing effective visualizations. The information

sources include models of the data, the user, and the machine (hardware and

software) environment. In addition, a knowledge base of visualization-related

information is used in designing the visualization based on the data analysis

task of the scientist. This framework can be applied to the development of a

visualization system for any application domain.

Chapter 1 has provided an introduction to the thesis topic, describing the

motivation behind the research, the goals and approach of the research and a

summary of previous related work. The remainder of this thesis is organized
as follows.

Chapter 2 describes the application domain that was selected for the design of

the prototype visualization assistant. This chapter includes the data charac-

teristics and visualization requirements of the application domain. Four user

scenarios are then presented that demonstrate how CAS scientists perform

their data analysis.
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Chapter 3 describes the conceptual framework that is the basis for the visu-

alization assistant. A special emphasis is placed on the data model, the main

and most completely developed component of the framework.

Chapter 4 describes the prototype system, MDV (MultiDisciplinary Visual-

izer), developed based on the conceptual framework. This section describes

the design process and the MDV interface.

Chapter 5 discusses user feedback about the MDV system. Conclusions and

plans for future work are also presented in this section.
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CHAPTER 2

APPLICATION ENVIRONMENT

Computational aerosciences, a multidisciplinary application in which the dis-

ciplines that affect the performance of aircraft are computationally modeled,

was selected as the specific application for the design of the prototype vi-

sualization assistant, MDV (MultiDisciplinary Visualizer). This system was

designed to assist researchers at the NASA Ames Research Center to visual-

ize the results of computational aerosciences (specifically, fluid dynamics and

structural dynamics) simulations.

This chapter details the application environment, describing the purpose

and properties of computational aerosciences simulations. Computational fluid

dynamics and computational structural dynamics, the two disciplines modeled

in current simulation efforts, are then described in detail. Visualization for

computational aerosciences is presented, describing the visualization mappings

that are typical for the application domains. A detailed description of the

simulation research in progress is presented, followed by usage scenarios, which

describe how the scientist approaches CAS data analysis.

2.1 Computational Aerosciences

Designing safe and efficient next-generation high speed air transport re-

quires the concurrent analysis of the several physical disciplines that affect air-

craft performance. These disciplines include fluid dynamics, structural dynam-

ics, thermodynamics, and propulsion. Forces from all of these disciplines affect

aircraft performance. Fluid dynamics analyses provide information about the

aerodynamic characteristics of the aircraft, such as the amount of lift and drag

or the presence of vortices 1°. Structural dynamics analyses predict wing flut-

ter and material failure. Thermodynamics analyses detect areas of extreme

temperature that may affect aircraft integrity or passenger comfort. Propul-

sion analyses predict how engine characteristics affect the performance of the

vehicle.

Currently, these individual disciplines are modeled separately, with the

integration of results performed by humans. Single discipline simulations, such

as those performed in computational fluid dynamics, require enormous com-

putational resources. The amount of resources necessary to perform coupled,

multiple-discipline studies is even greater. The advanced computing tech-

nology offered by parallel computer architectures has the promise of making

multidisciplinary simulations feasible.

1°Circulating regions of flow.



This advanced computing technology is very valuable to the aeronautics

industry as traditional large-scale empirical tests (i. e. wind tunnel tests, flight

tests) are not only costly, but often infeasible due to the high-altitude, high-

speed flight conditions that must be reproduced. To design an optimized

vehicle, coupled multidisciplinary computational models are necessary. Single

discipline computer simulations have proven to be an effective tool in the design

process, decreasing the design time cycle and improving aircraft efficiency, all

at a reduced cost. Multidisciplinary simulations will undoubtedly follow this

lead, playing an important role in future aircraft design.

The Computational Aerosciences (CAS) Project, part of the High Perfor-

mance Computing and Communications Program (HPCCP) [32], investigates

some of the difficulties that arise from incorporating several disciplines in a

single simulation. One of the main goals of this project is a multidisciplinary

analysis of a next-generation air transport, coupling fluid dynamics and struc-

tural dynamics. A basic description of these disciplines is presented in the

following sections.

2.1.1 Computational Fluid Dynamics

Computational fluid dynamics (CFD), the analysis of fluid flow via nu-

merical simulation, assists scientists and engineers in developing a better un-

derstanding of how airflow affects the flight characteristics of aircraft and

aerospace vehicles. The CFD simulation process consists of grid generation,

flow solution, and post-processing data analysis. Simulations can be performed

for either two-dimensional or three-dimensional objects. However, for the rest

of this thesis, I assume the simulations are of the three-dimensional variety. A

discussion of post-processing data analysis for fluid dynamics and structural

dynamics is deferred until Section 2.2.

Grid generation consists of creating a volumetric grid about the body

of the aerospace vehicle, with nodes positioned in a Cartesian coordinate sys-

tem. The most common grids are logically organized (or "structured") grids,

possessing a connectivity that is implicitly defined by the three-dimensional

arrays that contain the grid point positions. The physical positions of the grid

points form curved and warped surfaces that conform to the geometry of the

modeled aircraft. The grid cell sizes vary, from small cells near the vehicle to

capture detailed physics, to large cells in the outlying regions of the grid where

detail is not required. Typically, one or more computational grids exist to give

more accurate detail to areas of complex geometry and physics. Figure 2.1

shows a simple CFD grid.

Flow solution involves solving the equations that govern fluid flow rela-

tive to a set of given boundary conditions. The basic laws of physics that apply
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Figure 2.1: A simple CFD grid.

to fluid dynamicsinclude the conservationof mass,conservationof momentum
and conservationof energy. From thesebasiclaws,equationsare derived that
are describedby five field variables. Thesevariables,computedat eachnode,
are the density of the fluid, the x, y, and z componentsof the fluid momentum,
and the energyof the fluid. All other field variablesof interest can bederived
from thesefive variables(i.e. pressure,velocity, etc).

The equations derived from the basic laws can be classifiedinto three
categoriesbasedon simplifying assumptions.Themost basicequationsarethe
potential equationsthat describea fluid flow that is isentropicandirrotational.
In simpler terms, isentropic flow is when no heat is added or taken away
and where no frictional or dissipative effectsoccur, and irrotational flow is
whenvorticesare non-existent. The Euler equationsfall into the intermediate
category, where the assumption is made that the fluid is inviscid. Inviscid
flow is frictionless flow. Finally, the Navier-Stokesare the most complexand
complete equations of fluid flow, taking into account the properties ignored
in the abovesimplifications. The Navier-Stokesequationsaremost frequently
used in aeronautics,describing flow by a set of nonlinear partial differential
equations.
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Figure 2.2: An unstructured computational structures grid.

2.1.2 Computational Structural Dynamics

The purpose of computational structural dynamics is to predict the be-

havior of a physical structure, such as an airplane wing, under actual operating

conditions. Aeroelasticity, in which wing flutter results from fluid forces, is of

particular interest to the aircraft community. The simulation process for com-

putational structures is similar to that for CFD, consisting of grid generation,

computation of the structural response, and post-processing data analysis.

The finite element method is typically used to formulate a model, or grid,

of the object in the structures domain. The finite element method allows the

dynamic behavior of a flexible body to be modeled as an assembly of specialized

structural elements such as beams, plates, and shells. This formulation makes

use of three-dimensional "unstructured" grids that describe the surface and

interior composition of the object.

Unstructured grids do not possess the same rectangular connectivity

as logically structured grids in CFD. Each element in an unstructured grid

is defined by an arbitrary number of nodes and can be a variety of shapes

(i. e. two-dimensional triangles and quadrilaterals; three-dimensional tetrahe-

dra and prisms). Each grid cell is numbered, as is each node in the grid.

The connectivity of the grid is explicitly specified by a list containing each

element number and the node numbers that comprise that element. A simple

unstructured grid, composed of quadrilaterals, is shown in figure 2.2.
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Matrix methods areusedin computational structuresto analyzethe dy-
namic and static responsesof structures. Structural deformationsare linear
and governedby Navier's equilibrium equations.Properties suchasthe mass
and stiffnessof the surfacematerial of the object are included in the compu-
tation of the object's responseto external forces.

2.2 Visualization for Computational Aerosciences

Scientific visualization for CFD simulations has been one of the driv-

ing applications in the development of visualization software. The factors that

have caused CFD applications to drive tool development are dataset size, com-

plex physical phenomena, and the three-dimensional, time-dependent (tempo-

ral) nature of the simulations. Many visualization mappings are available to

view the three-dimensional, time-dependent nature of fluid phenomena. Sim-

ilar mappings are available for computational structures.

Several distinguishing data characteristics guide the selection of appro-

priate visualization mappings. The characteristics used in the development of

the visualization assistant are described in the following sections.

2.2.1 Scalar, Vector or Tensor Fields

The most distinguishing characteristic of a data field is whether it is

scalar, vector or tensor. Scalar fields are scalar quantities (of rank zero) de-

fined on each node of the simulation grid. Scalar quantities include pressure,

energy, density, and temperature. Vector fields, such as fluid velocity or mo-

mentum, are vector quantities (of rank one) that describe the direction and

magnitude of a variable at each node in the field. Tensor fields, such as stress

in computational structures, are tensor quantities (of rank two) defined at each

node in the field.

Scalar field visualizations are the most common type of visualization

generated in the computational aerosciences domain. There are several stan-

dard mappings to view scalar quantities. Colormapping consists of mapping

data values to color values. This mapping is good for understanding trends

and structure of the data; however, it does not convey quantitative knowledge

well. Figure 2.3 shows pressure data colormapped on a fluids gridplane 11.

Contouring is an effective mapping for a quantitative analysis of scalar

data. Scientists use contour mappings to easily compare and correlate data in

the simulation. Contours show trends and offer greater numeric precision than

11A gridplane is a surface within a three-dimensional logically structured grid specified
by holding one index is constant.
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Figure 2.3: Scalar pressure data colormapped (top) and contoured (bottom)

on a fluids gridplane.
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colormapped datasets. Numerical values are often displayed with correspond-

ing contour lines; however, this causes visual clutter. Color-coding contour

lines or selecting the contour line with the mouse to display the value can

alleviate the problem of clutter. Figure 2.3 shows contour lines portraying the

pressure on a fluids gridplane with a popup menu containing the data value.

Isosurfaces are the three-dimensional extension of contour lines. Isosur-

faces are surfaces of a single scalar value in a three-dimensional field. They

are helpful in understanding structure by isolating data of a constant value.

However, because isosurfaces of different values obscure each other, only a few

can be viewed simultaneously. Techniques such as transparency can help to

address this problem.

Vector field visualization requires mappings that are able to capture both

the magnitude and the direction of the data. A simple mapping involves the

drawing of small vector arrows for each grid point in the data. This mapping,

called an arrow plot (sometimes referred to as a vector plot or hedgehog), gives

the user a feel for the directionality of the flow field by viewing the texture.

Although this mapping is simple in form, it can be confusing to interpret by

the scientist when the density of data points is high. The collection of arrows

can become cluttered, causing confusion, especially when a three-dimensional

subset of the grid is depicted using an arrow plot. As a result, the scientist

must select a relatively small portion of the flow field with a density of arrows

that may not be sufficient to show fluctuations in the flow field. Velocity arrow

plots are shown in figure 2.4.

Another mapping for displaying vector fields is the streamline. Stream-

lines are curves that are tangent to the flow field at an instant in time. In a

steady flow (where the flow field does not change with time) the streamline

represents the path a massless particle would take in the velocity vector field.

Scientists must specify the initial seed location of the particle. The placement

of the seed location is often done by trial and error, searching the field for

regions of interest.

Because a single streamline represents only a single particle, it is difficult

to obtain a more global impression of the flow field. Scientists often use a col-

lection of particle seed locations located close together along a line. This set

of seed locations is referred to as a "rake," and it generates a family of stream-

lines as shown in figure 2.4. This visualization gives a broader representation

of the vector field.

In complicated flow regions, for example, where vortices are located,

streamlines generated from a rake can become twisted and entangled, which

can be visually confusing, since the streamlines are no longer visually distinct.

Streamlines are often given a thickness so that they become thin ribbons. This

mapping allows the scientist to better distinguish the individual particle paths
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Figure 2.4: Vector velocity depicted by an arrow plot on a fluids gridplane

(top) and by a family of streamlines (bottom).
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and judge their curvature in the flow field.

However, ribbons can still be difficult to discern and the scientist is left

with a complex image of the flow field. In addition, the ribbons twist only in

the streamwise direction of the flow. The stream surface, shown in figure 2.5,

is a mapping to view the vector field as a surface so that the curvature of the

flow can be seen downstream and across the width of the surface [34]. The

surfaces bend and twist with the flow, generating an image that is useful in

depicting complex fields.

Visualization mappings to view tensor quantities are still highly specu-

lative and in very early phases of research [17]. As a result, they have been

omitted from this work.

2.2.2 Spatial versus Temporal

Visualization mappings may be spatial or temporal in nature. Spatial

mappings do not take into account the time variable when constructing a

visualization. Temporal mappings, in addition to spatial information, are dis-

tinguished by their use of the time variable when constructing a visualization.

Colormapping is an example of a spatial mapping which is applied to

a single timestep of data, such as shown in figure 2.3. Mappings such as

streamlines and stream surfaces are also spatial, using only the information

contained in a single timestep. Pathlines and streaklines are two temporal

visualization mappings that are applied to multiple timestep datasets [41].

A pathline shows one trajectory of a particle released at a given moment

in time from a seed point. It is interesting to note that without the time

variable, the pathline and streamline are identical. A streakline is the locus of

an infinite collection of particles that have been continuously released from a

single location. The use of temporal mappings such as pathlines and streaklines

provide the scientist with a more intuitive feel for the progression of flow in a

dynamic flow field.

Animation is an important technique for viewing related spatial map-

pings. Related spatial mappings may consist of different views of a time-

independent dataset, or a sequence of spatial mappings applied over a time-

dependent dataset. Animation is used to view the results of temporal map-

pings. The use of animation reinforces the time-dependent nature of the data.

However, not all temporal mappings need to be animated. For example, a

simple line plot of the time history of a data point may provide a clear inter-

pretation of the dataset dynamics.
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Figure 2.5: A complexfluids velocity field depictedby entangledstreamlines
(top). The sameflow is depicted by a streamsurface,simplifying the repre-
sentation and showingthe curvatureof the flow field.
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2.2.3 Continuous versus Discrete

Most of the phenomena modeled in computational aerosciences are con-

tinuous in nature. The discrete nature of the computational grids is typically

reconstructed into a continuous space using interpolation methods. Mappings

such as contours, color contours, surfaces, streamlines, and streamsurfaces

provide good methods for viewing continuous data fields.

However, certain variables are computed at the nodes of the computa-

tional grids and are discrete values. When continuous mappings are applied

to data of discrete type, a visualization can create misleading artifacts. An

example of discrete data is the structures variable nodal force. Nodal force is

computed at each node of a finite element representation, based on pressure

integrated over the area of adjacent elements. A colormapped visualization,

shown in figure 2.6, is a misleading representation of the data. The visualiza-

tion implies that the nodal force values are distributed evenly over the surface

of the finite element wing. However, this is not the case, since the nodal forces

are intended to be discrete data values, computed at each node on the wing.

A better representation of this variable would be to use a discrete mapping,

such as a collection of discrete symbols, with each symbol colored with the

magnitude of the force (shown in figure 2.6).

2.2.4 Local versus Global

Visualization of CFD data involves working with three-dimensional grids

that are difficult to portray on a two-dimensional medium such as the computer

screen. Scientists often choose to view small, local subsets (one-dimensional

or two-dimensional) of their data using mappings such as line plots (one-

dimensional), colormaps or contours (two-dimensional). These local repre-

sentations are effective in examining detailed sections of the dataset to be

analyzed. The scientist typically knows where the regions of interest are lo-

cated, so these mappings are sufficient.

Data subsetting is required for viewing local mappings such as colormap-

pings, contouring and vector plots to avoid visual clutter and confusion. Data

subsetting can involve, among other options, selecting a gridplane of the com-

putational grid, selecting an arbitrary cutting plane that is some cross section

of the computational grid, or selecting a subvolume of the grid.

When the scientist is not familiar with the general structure of the data,

he/she may choose to view the entire three-dimensional, global view of the

data. Visualization mappings exist that can allow the scientist to portray the

entire dataset at once for both scalar and vector data fields.

For scalar data, such as pressure, temperature or local Mach number,

volume rendering can be an effective way to view the overall structure of the
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Figure 2.6: Nodal force visualized using a continuous mapping (top) and a

discrete mapping (bottom).
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data. One method for volume rendering is basedon a ray-castingalgorithm.
The ray traverses through the volume, accumulating color and opacity in-
formation obtained by integrating a function of the data it encounters[69].
Vector data can also be visualized using this mapping,given a function that
can map the data expressivelyfor interpretation by the scientist.

A mapping to display a complete three-dimensionalvector dataset is
vector field topology [27]. Vector field topology is a mathematical analysis
of the vector field that consistsof finding points, curvesand surfacesthat
characterizethe integral manifolds in the vector field. The integral manifolds
includeparticle traces,streamlines,and streamsurfaces.By visually analyzing
this mathematical representation of the flow field, the scientist can locate
points of interest suchas critical points (points of zerovelocity), vortex cores
(the theoretical "center" of a vortex) and other structural landmarks in the
flow field. Usingthesefeaturesasguidepoints,onecan thenuselocalmappings
for further study of the data.

2.3 The HSCT Grand Challenge Problem

One of the grand challenge problems 12 under investigation at the NASA

Ames Research Center is the High Speed Civil Transport (HSCT). Scientists

are developing multidisciplinary simulation software, coupling fluid dynamics

and structural dynamics [50], in order to examine the flight characteristics of

supersonic transports. The HSCT is a government-sponsored research project

to design and develop a new high-speed commercial jet by the year 2005. The

range of the HSCT is 5,000 nautical miles and its capacity is 300 passengers.

A gridded surface of a model of the HSCT is shown in figure 2.7.

2.3.1 Simulation Overview

The simulation, currently modeling only a wing of the HSCT, is per-

formed using a direct coupling of the physical disciplines to study the aeroe-

lastic effects of aircraft flying near the speed of sound. Because of the com-

putational power required for multidisciplinary simulations, the use of parallel

computers is under investigation. For this simulation, a 128 processor Intel

iPSC/860 was used [50]. The Mach number la selected for the computation

was 0.7 with an angle of attack 14 of one degree.

l_Grand challenge problems are large-scale computational problems whose solution would
impact progress in science and engineering. The computational problems associated with
the HPCCP CAS project are described as grand challenge problems.

laThe speed of the aircraft, divided by the speed of sound.

14The angle of the wing with respect to the direction of the airflow.
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Figure 2.7: The High SpeedCivil Transport (HSCT).

The direct-coupled,fluid structure interaction methodologyinvolves1) a
numerical schemefor time integration of the flow field, 2) a numericalscheme
for time integration of the structural velocity fieldis, 3) a grid update scheme
that adjuststhe fluid grid basedonstructural deformations,and4) atime step-
ping mechanismthat couplesthe three componentsefficiently and accurately.
Data transfer is performedat the interface of the two disciplines,specifically
at the surfaceof the wing.

In the fluids domain, the flow field about the HSCT wing is discretized
usinga structured, body-fitted, curvilinear grid. The densityof the grid varies
spatially, basedon the desiredresolution in the variousregionsof the flow field.
The varying grid cell sizesare intendedto conservestorageand computation,
while still capturing the detailed physical phenomenathat occurs in regions
of interest suchasin and near the boundary layer16.The fluids computation
wasperformedon a grid with 184,975grid points using Euler's equations for
inviscid flow. Two gridplanesof the three-dimensionalstructured fluids grid
areshownin figure 2.8.

In thestructuresdomain, the wing wasdiscretizedusinganunstructured,
finite elementgrid. The discretization of the two domainsdo not coincide at
the surfaceof the wing; eachdomain has its own discretizationrequirements.
The wing wasmodeledusinga coarseirregular grid of 921nodes.The wing is
shownin figure 2.9. The top half of the figure showsthe configuration "pulled
apart"; separatedinto its upper surface,lower surfaceand internal structure.
The bottom half showsthe completeconfiguration in proper alignment.

15Structural velocity represents the rate of change of the deforming grid.

16The boundary layer is the thin layer of fluid near the surface of a modeled geometry,

such as the HSCT wing.
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Figure 2.8: The HSCT wing fluids grid.

Figure 2.9: The HSCT wing structuresgrid.
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2.3.2 User Scenarios

As a first step in the design of the visualization assistant, scientists were

consulted as to how they typically approach their data analysis. User scenarios

were created based on this information which helped to shape the development

of the MDV visualization system. The design of these scenarios provided in-

formation about the typical tasks scientists were interested in performing. In

addition, scenarios gave valuable information as to how to design the interface

by establishing what information needed to be included in the system and

in what order. The resulting user interface, which will be presented in sec-

tion 4.2.1, was designed to accommodate the following sample scenarios used

when analyzing computational aerosciences data.

Each of the data analysis scenarios is presented in four steps. First, a

description of the data analysis task is presented. Second, a high-level, natural

language query is distilled from the task description. Third, this query is

broken down further into simple components that can be easily implemented

in a menu-based system. Finally, the resulting visualization and how it helps

to accomplish the data analysis task is described.

2.3.2.1 Scenario One: Debugging

The scientists involved in performing a multidisciplinary simulation are

developing their simulation software. One of the major components of the code

automatically updates the computational grids so that both correctly depict

the deforming wing of the HSCT. However, because of the complex nature of

the structural deformation, the alignment of the grids does not match. The

scientists are interested in viewing where the mismatch occurs and how it

progresses, which helps them to adjust their algorithm accordingly. In order

to accomplish this task, the scientist generates the following query:

Find the mismatch error between the fluids and structures grid

positions on the HSCT wing.

This can be rewritten using the following basic query parameters. These pa-

rameters were common amongst all scenarios. These parameters became the

basis for the user interface design.

1. DATASET NAME: The HSCT dataset,

2. FLUID OBJECT/STRUCTURES OBJECT: The wing of the HSCT, in both

cases,

3. FLUID VARIABLE/STRUCTURES VARIABLE: Position, in both cases,
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4. OUTPUT: The color printer, so that this visualization may be printed for

this thesis (the default value for this parameter is the computer screen),

5. TASK: Debugging.

Because the scientists are interested in viewing the fluids grid, they must

select if they want to visualize all of the grid or only a subset of the grid. This

information is not known by the system and must be entered by the scientists.

After selecting the grid subset, the visualization is designed and rendered

first to the screen. Although the visualization is rendered to the screen, it is

made suitable for printing to a color printer. The scientists only need to click

on the image and send the output to the color printer. The resulting image is

shown in figure 2.10.

This image shows the mismatch of the two grids at the tip of the HSCT

wing. Although a single timestep of the visualization shows the error, the

animation of all the timesteps shows the progression of the error. This aspect

of MDV was very helpful to the multidisciplinary scientists in the early stages

of their code development.

2.3.2.2 Scenario Two: Exploration

The scientists are interested in viewing the relationship between stress

on the wing and the corresponding velocity field of the fluid. This relationship

is helpful in understanding the dynamics of aeroelastic wing fluctuations. In

order to accomplish this task, the scientist generates the following query:

Explore the relationship between the fluids velocity field and the

stress variations on the HSCT wing.

This can be rewritten using the following basic query parameters.

1. DATASET NAME: The HSCT dataset,

2. FLUID OBJECT/STRUCTURES OBJECT: The wing of the HSCT, in both

cases,

3. FLUID VARIABLE/STRUCTURES VARIABLE: The fluids variable velocity

and the structures variable stress,

4. OUTPUT: The color printer,

5. TASK: Exploration.
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Figure 2.10: Scenario 1: Debugging the simulation software.
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The result of this query produces a colormapped animation of stress on

the deforming wing, with velocity streamlines about the wing. The resulting

image is shown in figure 2.11. The interaction widget, shown in red, allows

the user to explore the dataset by "mousing around" and moving the origin of

the family of streamlines to probe areas of interest.

This interaction mechanism provides a more intuitive way to explore the

relationships between the flow field and geometry. Other visualization systems,

such as FAST, provide similar visualization mappings, but the user is required

to specify the location of the seed points of the streamlines by indirectly using

text or widgets. The direct manipulation mechanism is much more effective

for exploration.

2.3.2.3 Scenario Three: Analysis

The scientists are interested in viewing the changing pressure forces on

the wing and the resulting stress from those forces. They want to verify that

the data is evolving in accordance with experimental tests. This analysis task is

geared toward combining quantitative analysis with qualitative visualizations.

This goal is accomplished by querying data values and plotting their time-

histories. The data values are queried by picking points on the visualization

with the mouse. In order to accomplish this task, the scientist generates the

following query:

Quantitatively analyze the relationship between the fluids pressure

field and the stress on the HSCT wing.

This can be rewritten using the following basic query parameters.

1. DATASET NAME: The HSCT dataset,

2. FLUID OBJECT/STRUCTURES OBJECT: The wing of the HSCT, in both

cases,

3. FLUID VARIABLE/STRUCTURES VARIABLE: The fluids variable pressure

and the structures variable stress,

4. OUTPUT: The color printer,

5. TASK: Analysis.

Again, because the scientists want to study the fluids grid, the system

asks if they are interested in the entire grid or a subset of the grid. In response

to the query, the system designs a colormapped animation of stress viewed on
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Figure 2.11: Scenario 2: Exploring a Velocity Vector Field.
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the deforming wing. Fluid pressureis shownon the selectedgridplane using
contour lines. The resulting imageis shownin figure 2.12. The usermay click
the mouseon data points of interest to query their value. The scientist can
chooseto plot the data valuesover time as shownin the visualization. The
small red cross-hairdenotesthe nodeselectedfor plotting.

This visualization gives the scientist a mechanismfor comparing data
valueswith experimental data. The plotting capability showsthe scientist if
the oscillation of the wing acts as predicted. For this case,the oscillation is
transientlr asexpected.

MDV selectednot to representboth field variablesusing colormapping
techniques.This decisionwasmadeto avoidconfusionwheninterpreting rela-
tionships betweendata variables.Becausethe field variables and their respec-

tive dynamic ranges were different, incorrect relationships might have been

established had both data values been colormapped. In order to avoid this

confusion, colormapping was used to depict one field variable (stress) while

contouring was used to depict the other field variable (pressure).

2.3.2.4 Scenario Four: Presentation

The scientists are interested in preparing a presentation graphic for a

paper they are submitting to a conference. They are interested in showing

the pressure variations in the fluids domain together with the deforming grid

of the structures. Because of cost constraints, the image must be black and

white. In order to accomplish this task, the scientist generates the following

query:

Generate an image for a conference that shows the relationship

between the fluids pressure field and the structures position of the

HSCT wing.

This can be rewritten using the following basic query parameters.

1. DATASET NAME: The HSCT dataset,

2. FLUID OBJECT/STRUCTURES OBJECT: The wing of the HSCT, in both

cases,

3. FLUID VARIABLE/STRUCTURES VARIABLE: The fluids variable pressure

and the structures variable position,

4. OUTPUT: A black and white laser printer,

17An oscillation is transient if its magnitude diminishes over time.
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5. TASK: Presentation.

The scientists are asked to select a subset of the structured fluids grid. A

basic visualization mapping is selected because the resulting image is intended

for presentation. A contour plot of the pressure field is presented which shows

the varying pressure field and a clear representation of the structures wing.

The resulting image is shown in figure 2.13 and is typical of what might be

found in journal or conference publications in the scientist's domains.

These four scenarios were identified as four of the main types of data

analysis tasks multidisciplinary scientists are interested in performing on their

data. These tasks are only four of the many possible tasks that the scientist

may be interested in performing. However, for the purposes of this project

these tasks were the only ones studied.

2.4 Summary

This chapter presented an overview of the application environment se-

lected for the development of the visualization assistant. This environment,

computational aerosciences, is complex and unwieldy for scientists interested

in performing data analysis. As a result, this application environment provides

the motivation for the development of a visualization assistant. Although the

development of a visualization assistant can be applied to any application en-

vironment, this particular environment was a good choice for the development

of the prototype system for several reasons. First, scientists are unfamiliar

with other scientific domains. This increases the need for a visualization as-

sistant to assist them in analyzing data from an unfamiliar domain. Second,

the large number of data files and complexity of the different data types and

data formats demonstrates the benefit of a more automated approach. Finally,

because the scientists didn't have a visualization system that could show both

domains simultaneously, they were enthusiastic about participating in the de-

sign of MDV.

The user scenarios developed when working with scientists proved to be a

valuable experience. By understanding the major classes of tasks the scientists

are interested in performing, the design and development of the user interface

became clearer. The scenarios provided the necessary structure from which to

build the outline of the interface. As the system becomes more sophisticated,

additional scenarios can be incorporated to provide additional functionality.

This method of interface design is highly recommended.

The next chapter presents the underlying framework for the visualiza-

tion assistant. The next chapter discusses how the data characteristics, do-

main knowledge and usage scenarios were incorporated into the visualization

framework.
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CHAPTER 3

THE VISUALIZATION FRAMEWORK

This chapter presents the framework for the visualization assistant. The frame-

work consists of a data model, a user model, a machine model and a knowledge

base. The three models were chosen because they each characterize an essential

information source that impacts the design of a visualization. The knowledge

base contains additional information that supports the visualization design

process.

Each information model is described individually in the next three sec-

tions. In each section, a general definition and purpose of the model is pre-

sented. This definition is followed by a description of the contents of the model

and how it is implemented in the visualization assistant. The model descrip-

tion also identifies the attributes contained in the model that influence the

design of visualizations. These sections are followed by a section describing

the knowledge base and its content. Finally, the process of designing a visu-

alization based on the information models, the knowledge base, and a given

user directive, is described.

3.1 The Data Model

The data model is the main and driving component of the visualization

framework. The following section defines the concept and properties of a data

model. Also included in this section is a classification of the different types of

data models used in visualization systems.

3.1.1 Definition and Purpose

Recent interest in data modeling for scientific visualization has been

demonstrated [5]. A data model is a mechanism for managing data so that

data and information about the data can be retrieved easily and quickly. The

data models described in this section represent the current use of data modeling

concepts in the field of visualization.

The incorporation of database ideas into visualization systems is still in

early stages and many avenues have yet to be explored. As is common when

combining work from different domains such as visualization and databases,

terminology and basic conventions may not be consistent. For example, in

the visualization domain, the term "data model" is used to describe a phys-

ical and/or logical representation of scientific data. In contrast, the term

"data model" in the database domain is used to describe an abstract model-

ing paradigm (i.e. the object-oriented data model, the relational data model).



Visualization data modelsare typically crafted using databasedata modeling
paradigms.The term "data schema",in the databasedomain, is usedwhen a
representationof the data is specifiedusing a data modelingparadigm. This
term is probably a more preciseterm when describing specificvisualization
data models. However,visualization researchershave blurred the distinction
betweentheterms and "data model" hasbecomethe standardfor both concep-
tual databasemodelsand their resulting implementations. The terminology
in this thesisreflectsthe useof data modelingterminology in the visualization
field.

In the visualization community, two levelsof abstraction arecommonly
usedwhen defining data models. At the morebasiclevel, data is describedin
terms of their physicallayout or data format. At the moreabstract level, data
can be describedby their logical layout and semanticcontent. Physical data
modelsare representationsof dataon a physicallevel,representinghow data is
stored in the computer. In this case,the logical structure of the data model is
closely tied to the physical representationof the data. Thesemodelsare very
effective for standardization and interchangeof data and often serveas the
internal data model for visualization systems.However,physical data models
do not possessenoughhigh-levelabstraction nor do they contain the mecha-
nisms for modelingthe information necessaryfor mapping data effectively to
visualizations.

Someof the more successfulvisualization-orientedphysical data mod-
els include CDF [65], netCDF [52], and HDF [48]. NASA's CDF (Common
Data Format) was designedto provide support for multidimensional, block-
structured data. Unidata's netCDF [52] was basedon the CDF concept of
multidimensionalblocksof data, but with a specificemphasison issuesof data
transport. HDF (Hierarchical Data Format) [48], from NCSA, wasdesigned
to meet the needof data transport amongheterogeneousmachines.This need
stemmedfrom the requirementto accessimagesand other data generatedon
supercomputersfrom personalcomputersand workstations.

Conceptualdata modelsare high-leveldata models,providing abstrac-
tions to structure the data similarly to how the userperceivesthe data. These
modelsarehigh-level in their specification,and their approachallowsa great
dealof flexibility. Conceptualdata modelscanfall into two categories,general
purpose and special purpose. Generalpurpose conceptualdata models are
specifiedusingthe true conceptualdata modelsthat arefound in the database
field. Someof the more common databasemodeling paradigmsinclude the
relational, extended-relational,semantic,and object-oriented.

The object-orientedand extended-relationaldata modelsaremost com-
monly usedwhen specifyingscientific data. They are superior to traditional
hierarchical, network, and relational models becausethey can manage the
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multidimensional, heterogeneousstructure of scientific data. Conceptssuch
as a classhierarchy, inheritance, and methods are useful for modelingscien-
tific data and are not presentin the traditional data models. In addition, the
traditional modelsprovide little support for the semanticinformation that is
usefulin describingscientific data.

Fortheir visualizationsystem,SabellaandCarlbom [59]usedtheobject-
oriented model to representempirical data from oil reservoirstudies. They
usedthe object-orientedparadigm to managethe manydifferent typesof ge-
ometric and non-geometricdata that are used in reservoiranalyses,suchas
three-dimensionalsolid bodiescombined with surfacedata, two-dimensional
image data, and one-dimensionalcurves. In this case, the object-oriented
model provided a useful abstraction mechanism,supporting complex query
operationson the heterogeneousdata.

A specialpurposedata model is onedevelopedspecificallywith a certain
type of data in mind. For example,the fiber bundle model [12]wasdeveloped
to suit the needsof scientific data is. Fiber bundles are based on differential

geometry and provide a high-level representation of many types of geometrical

objects found in scientific data. Basically, a fiber bundle is specified by two

spaces, a base space and a fiber space. Elements from the fiber space are

attached to each point of the base space. The result may be thought of as a

generalization of a function of one or more variables, in which the base space

is analogous to the independent variable and the fiber space is analogous to

the dependent variables.

Ahmed, Wanger, and Kochevar use the fiber bundle conceptual data

model in the implementation of their visualization system [3], as described in

section 1.3.4.

3.1.2 Implementation

The object-oriented data modeling paradigm was selected for the MDV

visualization assistant because of its conceptual modeling mechanisms and

straightforward implementation route. The concepts and modeling mecha-

nisms of the object-oriented paradigm are presented in the following section.

This basic description of the object-oriented approach is intended to familiarize

the reader with the properties of the object-oriented paradigm. This descrip-

tion is followed by several reasons that demonstrate why the object-oriented

paradigm a wise choice for managing computational aerosciences data.

laIf desired, the fiber bundle model can be applied to many other types of data such as
relational data.
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3.1.2.1 The Object-Oriented Paradigm

The main concepts of the object-oriented paradigm include abstraction,

encapsulation, and inheritance [10]. Abstraction is an effective way to deal

with complexity, breaking down detailed systems into simple conceptual ob-

jects with distinct boundaries. An abstraction describes all the necessary

characteristics of an object that make it a distinct entity to the viewer.

Encapsulation captures the essence of the object paradigm, providing a

clear separation between the external workings of objects and their internal

implementation. Encapsulation and abstraction are complimentary to each

other. Abstraction focuses on the outside view of the object, while encapsu-

lation provides a mechanism for hiding the inside, detailed view, which does

not need to be seen by the viewer.

Although abstraction allows for the decomposition of complex systems,

there is usually more information than the viewer can handle. Abstraction is

often not enough to manage the complexity. An ordering mechanism must be

incorporated to organize these abstractions so that the viewer may comprehend

the overall system. Inheritance is one mechanism that performs this ordering.

Inheritance defines relationships among objects. A class of objects can inherit

structure or behavior from another class of objects.

Basic modeling concepts are necessary to specify an object-oriented model.

The following core concepts are generally used by the members of the object-

oriented community 19 [40].

• Object: An object represents a real world entity.

• Attributes: The values of the attributes of an object constitute the state

of the object.

• Methods: The set of methods associated with an object define behavior,

operating on the state of the object.

• Classes: Classes organize collections of objects with similar attributes

and methods. Each object is an instance of a class.

• Class Hierarchy and Inheritance: A class may have any number of sub-

classes that inherit properties from this superclass. The organization of

classes is the class hierarchy.

Metadata is a concept associated with data modeling. Metadata can

most easily be described as data about data. It can take on many forms, from

tgThe Object Database Standard [15] has been developed as an attempt to standardize
object-oriented terminology. However, this standard is not yet widely accepted.
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describing the structure of the data, to codifying knowledge about the data.

Basically, anything that establishes a context for the primary data (in this

thesis, the data computed by scientists) can be considered metadata.

The concepts of metadata and attributes (as described above) are of-

ten used interchangeably. Attributes are typically considered a subset of the

broader metadata class. Attributes are generally used to describe the syntac-

tic, structural information about the data, including its type, dimensions, and

rank. Metadata contains additional semantic information of the data, such as

the names and relationships of the physical variables, contextual data about

the simulation, and the processing history of the data. It is often the case

that the term "attribute" is used in a general sense to describe a specific piece

of information about the data, whether it is syntactic or semantic. In this

thesis, the term "attribute" is used in this general sense and describes both

the semantic and syntactic properties of the data.

The high-level modeling mechanisms of the object-oriented model per-

mit the creation of a general model that is a flexible foundation for all dis-

ciplines in a multidisciplinary setting. The uniform representation of data

across disciplines insures that data complexities are encapsulated, and that

the functionality of the visualization system can be applied to all disciplines
involved.

The object-oriented model was selected over other modeling paradigms

because its modeling capability is superior when handling hierarchical, multi-

dimensional, scientific data. For example, it is difficult to handle the simple

interrelationships found in a two-dimensional array using the relational model

[5]. In addition, capturing semantic information about the data using the

relational database model is difficult. The fiber bundle model does not con-

tain mechanisms for handling semantic information. Semantic information is

necessary in the design of the visualization assistant for describing the data

attributes that influence the design of visualizations.

In addition to its modeling capability, the object-oriented model pos-

sesses several properties that make it a wise choice for multidisciplinary sci-

entific datasets. Methods, or operations defined on data objects, have the

property of being polymorphic. That is, these methods can be applied to ob-

jects of different type, which allows for code re-use. For example, the dynamic

range of a field variable can be computed appropriately if it is a vector field

or a scalar field. In addition, only one method is necessary for computing

contour lines regardless if the grid that describes the data is structured or

unstructured. The ability to abstract the complexities of the data allows for

a software environment that is easy to comprehend, expand and maintain.

The capability to derive data when queried allows the model to express
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the information contentof the data without having to explicitly precompute
and store all data variables. Methods defined on the data objects "know"
how to compute any field variable queried by the scientist. The result is
a semantically rich data model that characterizesthe essentialinformation
neededby the scientist for data analysis.

The extensibility of the object-orientedmodel is beneficialso that addi-
tional disciplinescan be addedto the multidisciplinary application as neces-
sary. Becausethe data model ishigh-levelin nature, additional disciplinescan
be addedeasilyby the application developersimply by modifying the model
(to be describedin section3.1.2.2)for the additional discipline. For example,
if thermal data is integrated into the data model, an object representingthe
thermal datasetwould begeneratedand addedto the application. Additional
methodsand attributes would be defined to reflect the specific propertiesof
data valuesin the new discipline.

_.1.2.2 A Generalized Data Model for CAS Data

A generalized data model 2° for time-dependent data (shown in figure 3.1)

has been designed, using the object-oriented modeling paradigm, to manage

the data and information associated with computational aerosciences simula-

tions. The data from each domain simulated in a multidisciplinary computa-

tion is modeled as a specialization of this general model. As part of the spe-

cialization, domain knowledge is embedded into each of the domain-dependent

models in the form of attributes. Attributes that influence the design of visu-

alization mappings are also incorporated into each of the models.

This model was developed after several iterations on its design. The

design process involved studying the data management requirements for mul-

tidisciplinary data. The resulting model that was generated from these re-

quirements is general enough to hold all the different types of data that might

arise in a computational aerosciences simulation.

The generalized model is a hierarchy of relationships in which each class

"is-a-part-of" its parent class. The relationships amongst the data classes

depicted in figure 3.1 are not inheritance relationships. Rather, the hierarchy

is a composition of classes that define the necessary components for modeling

computational aeroscience simulations. The following paragraphs describe the

hierarchical model in order to understand the structure and relationships of

the data objects.

The DOMAIN class is the top-level of the generalized model. An instance

of the DOMAIN class represents one of the physical disciplines (i. e. fluid dynam-

ics, structural dynamics) modeled in a computational aerosciences simulation.

_°This data model would be considered a data schema if using strict database terminology.
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Figure 3.1: The generalized model for time-dependent CAS data. The class

composition hierarchy is depicted on the right side of the figure. Each oval on

the left side of the figure is an instance of its respective class. Many instances

of a class are typically contained within its parent class (i. e. several component

instances are contained within a single timestep instance.) Additional classes

exist that further modify the data hierarchy, however, they are not shown to

avoid clutter in the diagram. Only a single branch of the dense hierarchical
tree is shown.

The DOMAIN class includes attributes about the domain such as its name, the

number of timesteps it contains, and additional information about the domain

that contributes to the description of the data.

Each DOMAIN instance contains a sequence, or an ordered group, of

instances from the TIMESTEP class. This sequence represents the sequence of

timesteps in the time-dependent simulation 21. Each instance of the TIMESTEP

class represents all the data from a single timestep of its domain (represented

by its parent class, DOMAIN).

Each instance of the TIMESTEP class contains a collection, or an un-

ordered group, of instances from the COMPONENT class. Members of the

COMPONENT class represent the components, or grids, modeled in the simu-

lation. The number of COMPONENT instances can vary from one to several

dozen, with each instance representing a unique aspect of the simulated object.

This may include physical geometry components such as the wing, fuselage,

or flow field phenomena such as a shock.

Contained in each COMPONENT instance are the data fields and dimen-

sions (or topology) that makes up a single grid of a single timestep. The data

21If the simulation is time-independent (steady-state), the number of instances of the
TIMESTEP cla.s8 in the sequence is one.
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fields include the modeledgeometry (position) and the computeddata values
(i.e. momentum, density, energy, deformation, stress). This information is
modeledby the COMPONENTclass, which contains a collection of instances

from the FIELD-VARIABLE class to represent the data variables, as well as an

instance of the DIMS (dimensions) class or TOPO (topology) class to store in-

formation about the grid connectivity. A COMPONENT with a DIMS represents

a structured grid whereas a COMPONENT with a TOPO represents an unstruc-

tured grid. Each field in a COMPONENT instance is defined by the same DIMS

or TOPO.

Each instance of the FIELD-VARIABLE class contains information about

a single field variable in the simulation. Each field variable instance represents

only the data computed on a single component at a specific timestep and in

a specific domain. For example, a field variable instance can be the position

field of the wing at timestep zero in the structures domain. This field variable

contains physical locations of the grid points, or the pressure field, which

contains pressure values at each grid point. To accommodate grid complexities,

field data currently can be of type node, edge, face or cell. This list allows for

data values to be defined not only at the nodes of a computational grid but

on edges, faces and cells that are also defined by the grids. For example, the

surface normal used for 'flat-shaded' lighting can be defined on a face element

of a grid. The default type is node for most FIELD-VARIABLE instances. The

FIELD-VARIABLE class contains an instance of the BUFFER class, which holds

the actual data values. An instance of the BUFFER class contains a storage

pointer to the data as well as information about the type of data (float, integer)

and the number of items per element. A pointer to the data is used for

implementation purposes, so that the system may take advantage of memory-

mapping techniques when accessing the data.

For CAS data, each physical domain computed in the simulation is mod-

eled as a specialization of the generalized model. The collection of these

domain-specific representations is contained in an object called the MDV-

OBJECT. Currently, MDV-OBJECT contains DOMAIN objects representing fluid

dynamics (FLUID-DOMAIN) and structural dynamics (STRUCT-DOMAIN) (shown

in figure 3.2). MDV-OBJECT represents the top-level, application object of the

data model hierarchy. It represents a simulation (i.e. HSCT) and all of the

data associated with that simulation. Additionally, this object contains at-

tributes about the simulation, initial conditions such as the flight speed of the

aircraft (the Mach number), the angle of attack and the given conditions of

the airstream (i.e. temperature, density).

This section presented the class hierarchy modeling the data from multi-

disciplinary computational aerosciences. To provide a comprehensive model of

the data, attributes, which contain syntactic and semantic information about
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Figure 3.2: A multidisciplinary (fluid dynamics and structural dynamics)

model representing the HSCT. Again, the tree has been "pruned" to avoid

clutter in the figure.

the data, are necessary. Attributes also guide the visualization assistant with

the design of visualizations. The attributes essential to the design process are

described in the following section.

3.1.2.3 Data Attributes

The object-oriented data model, with the help of data attributes, cap-

tures syntactic and semantic information about data. The following is a de-

scription of the data attributes incorporated into the data model. The data

attributes influence the design of a visualization in three ways; that is, the

"scope of influence" of the attributes can affect l) the subset of the data to

be selected for visualizing, 2) the type of visualization mapping applied to the

data, and 3) the visual attributes associated with the rendering of the visual-

ization (i.e. the colormap, rendering style). A summary of the data attributes

used in designing a visualization is presented in figure 3.3. These data at-

tributes do not fully describe all aspects of the data, but rather provide a base

for the prototype visualization system.

Domain: The DOMAIN attribute specifies the physical domain of the data.

For this application, the domains are fluid dynamics and structural dynamics.

Future physical domains might include thermodynamics or propulsion. The

domain may impact which type of visualization mapping is selected based
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Component
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Dimensions/Topology

Rank
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Visualization Mapping. Visual
Attributes

Subset, Visualization Mapping

Visualization Mapping

Figure 3.3: Data attributes and their scope of influence in designing a vi-
sualization. Subset refers to the subset of data the scientist is interested in

viewing; visualization mapping refers to the type of mapping that is applied to

the data subset; and visual attributes refers to the attributes associated with

the rendering of the visualization.

on commonly used, or standard, visualization mappings in the individual do-

mains. The domain may also affect the visual attributes used in representing

the data. For example, a spectral colormap may be used when viewing fluid

dynamics data while a "thermal" colormap (with reds and blues representing

hot and cold, respectively) may be used for thermodynamics data. Finally,

when querying the visualization system, the scientist may chose to only view

data from his/her domain. The system selects data from the specified domain.

Component: The COMPONENT attribute semantically describes the one or

more computational grids that model the simulated object. The individual

grids are used to model either the physical components of the simulated object,

such as a wing, fuselage or tail, or the grids are used to capture phenomena

in the computed fields, such as a shock in a fluid flow field. The component

attribute determines the subset of data to be visualized. The scientist may

wish to select one, some or all of the components in his/her query.

Timestep: The TIMESTEP attribute specifies the timestep that the data

object represents. In multidisciplinary simulations, the time variable is another

independent variable that must be modeled, representing the actual value of

time and all of the data associated with it. The timestep attribute determines

the subset of data to be visualized. The scientist can choose to view all the
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timesteps or a subset of them. The timestep attribute may also influence

which type of visualization mapping to select for various field variables. For

example, if multiple timesteps are selected and the field variable is velocity,

the system may suggest the use of a temporal mapping such as the streakline

or pathline mapping.

Physical variable: The PHYSICAL VARIABLE attribute semantically de-

scribes the field variable, such as pressure, momentum, or deformation. Dif-

ferent physical variables may affect the choice of visualization mappings. For

example, the structures variable nodal-force may specify to use a discrete visu-

alization mapping instead of a continuous, since nodal-force is a discrete rather

than continuous field variable. The physical variable attribute may also affect

the choice of visual attributes. A colortable for viewing temperature data will

be best interpreted using reds and blues to represent hot and cold.

Dimensions/Topology: The DIMENSIONS/TOPOLOGY of a dataset repre-

sent the size and connectivity of a component grid. Dimensions are relevant

when the grid is structured in nature. For unstructured grids, dimensions are

replaced by the topology of the grid. Information in the topology include the

number of node points and the connectivity of those node points to generate

a grid, and includes the number of cells generated as a result of connecting

the node points. Both dimensions and topology specify a subset of data to be

viewed. The dimensions or topology of the data subset help to select either a

local or global visualization mapping. For example, if the dimensions of the

grid of data are two-dimensional, the visualization mapping selected should be

a local mapping, such as a colormap on the two-dimensional surface depicted

by the grid subset. If the subset is three-dimensional, global mappings such

as volume rendering or topology may be applied.

Rank: The RANK attribute represents the rank of the data fields computed

on any type of grid. Data can be classified by rank of scalar, vector or tensor,

with rank zerobeing scalar, one being vector and two being tensor. The

rank of the data will specify what type of visualization mapping to select. For

example, scalar data can be represented by the many available scalar mappings

such as colormapping and contouring. Vector data can be represented using a

vector mapping such as vector plots.

These data attributes are several of the important attributes necessary

for designing a visualization. They impact the subset of data to be viewed,

the specific visualization mapping chosen and the visual attributes used for

rendering. This list is not all-encompassing; however, it is the basic set of
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attributes implemented in the MDV system. Additional data attributes are

contained within the data, such as the data type, the dynamic range, the grid

type, the coordinate system, and the data point granularity. However, these

attributes do not contribute to the selection of the visualization mapping or

its visual attributes.

Data Type: Data classified by data type can be put into one of three cat-

egories: nominal data, which have no order, ordinal data, which are ordered

by rank only, and quantitative data, which are numerical [6]. The data from

multidisciplinary simulations are almost entirely quantitative in nature. Map-

pings for nominal and ordinal data, such as scatter plots, are not studied in

this thesis.

Dynamic Range: The dynamic range of the data specifies the range of

values in a given data object or collection of data objects. The range of data

is computed based on the subset of timesteps and components specified in the

scientist's query. The dynamic range attribute is necessary for the scaling of

visual attributes such as a colormap.

Grid Type: Information about the grid type is important when rendering

a visualization. Grids can be structured, unstructured, or a hybrid. Grids can

also change their shape as the simulation progresses over time.

Coordinate System: In computational aerosciences, the Cartesian coordi-

nate system is almost always used to describe the geometry of the simulated

object and its surrounding volume. In computational fluid dynamics, grids

are also defined in a "computational space", which is based on the implicit

grid connectivity associated with structured grids. Computational space is a

logical, regularly gridded space that makes performing visualization mappings

easier and faster. In computational structural dynamics, only Cartesian space

coordinates are used due to the unstructured nature of the grids.

Data Point Granularity: The information in this attribute specifies whether

a data point is of type node, edge, .face or cell. This attribute is necessary to

represent data values that are not always computed at the node points of a

grid. For example, surface normal data values make sense on a face of a com-

putational grid. In the structures domain, data values may be computed on a

two-node element (beam), which is represented as an edge.

Most of the attribute information is input by the scientist when he/she
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first registersthe dataset with the system. This information is then embed-
ded into the data model together with the data that it modifies. Additional
attribute information is addedto the data model, basedon the domainknowl-
edgeinput into the systemby developers.

3.2 The User Model

This section describes the user model and its role in the visualization

assistant. The user and machine models are skeletal because they are not the

main concentration of this project. Nonetheless, they are integral components

of the framework and their description and functionality are discussed. The

following sections provide a definition of the user model, a description of how

the user model is implemented in the MDV system, and user attributes that

it may contain that influence the design of a visualization.

3.2.1 Definition and Purpose

The user model serves to describe the user and his/her characteristics.

The information in the user model may include many different user attributes

including his/her background, preferences, level of expertise, or physiologi-

cal characteristics. User background might include information such as the

subjective meaning of certain color tables or shades as related to quantitative

information. Preferences may include a favorite color table or interaction style.

Level of expertise may specify how much experience the user has in visualiza-

tion. User expertise may affect the complexity of the visualization mappings

presented. Physiological characteristics may include a color deficiency or dif-

ficulties with fine motor coordination (i.e. working with a mouse).

3.2.2 Implementation

The user model is the knowledge source in MDV that contains explicit

assumptions about the user that may be relevant to the behavior of the system.

The user model is represented using a stereotype hierarchy [38]. A stereotype

hierarchy uses stereotypes to describe a general class of users. Stereotypes

define facts and assumptions that pertain to the user group's background,

preferences and data analysis goals. Models are typically crafted for each ap-

plication domain, usually by the explicit coding of domain-related goals, plans

or knowledge that system users are expected to have. For this application, the

hierarchy includes two main user stereotypes: fluid dynamicists and structural

dynamicists. Each class of users has a specific academic background which

has, in turn, led to the use of certain types of physical models, software, and

computing environments.
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Figure 3.4: The stereotype hierarchy user model.

These facts and assumptions can be of two types, either "definite" or "de-

fault". Definite facts and assumptions always apply to the given class of users.

For example, fluid dynamicists always use mathematical relationships such as

the Navier-Stokes equations to describe the relationships between data vari-

ables. Structural dynamicists use Navier's equilibrium equations that describe

the deformation and stress of a body when a force or pressure is applied. Def-

inite facts cannot be overridden, but information can be added to make them

more precise.

Default facts and assumptions can be overridden as the stereotype hi-

erarchy defines smaller classes of users. For example, a default assumption

might be that all fluid dynamicists use structured grids for their computa-

tions. However, default assumptions can be overridden if a certain group of

fluid dynamicists uses unstructured grids in their work. The stereotype hi-

erarchy can be further decomposed into smaller user classes and eventually

to individuals, who are represented as leaf nodes in this hierarchy. The user

model is represented in figure 3.4.

User characteristics can be determined by using explicit user modeling,

implicit user modeling, or empirical user modeling [24]. Explicit user modeling

requires the user to answer direct questions. Implicit user modeling involves
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Figure 3.5: User attributes and their scope of influence in designing a visual-

ization. Visualization mapping refers to the type of mapping that is applied to

the data subset; and visual attributes refers to the attributes associated with

the rendering of the visualization.

the system observing the usage characteristics of the user and making infer-

ences. Empirical user modeling involves having the user solve special tasks

while being observed by either the system or its developers. These tasks could

include tests for color deficiencies or for difficulties with fine motor coordina-

tion (when using a mouse).

3.2.2.1 User Attributes

User attributes that affect the user's performance and interpretation of

data fall into different categories, such as background and physiology. These

user attributes affect the generation of a visualization in two ways, 1) the

type of visualization mapping to be selected, and 2) the visual attributes as-

sociated with its rendering (i.e. the colormap, rendering style). A summary

of the described attributes together with their scope of influence is shown in

figure 3.5.

The specific background of a scientist can affect how he/she interprets a

visualization. The scientist's domain of study maintains its own conventions,

color schemes, and methods for data analysis. The scientist brings in his/her

own personal preferences and experience level. This information is necessary

to select visualization mapping matched to the capabilities and preferences of

the scientist.
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Conventions: Conventionsare methods for doing things a specific way
givena specificscientificdomainor workinggroup. For example,fluid dynam-
icists typically usecontour lines that do not havenumericalvaluesembedded
in them. Instead, they often color codetheir contour lines to distinguish data
values.This drawingstyle is a commonconventionthat haspropagatedduring
the evolution of visualizationsystemsfor computational fluids. This attribute

can affect the type of visualization mapping selected and the visual attributes

used for rendering.

Preferences: Preferences are individual, representing the scientist's fa-

vorite way of doing things. For example, a scientist might prefer using a

certain colormap for aesthetic reasons. By incorporating information about

the scientist's preferences, the resulting visualization is more pleasing. This

attribute can affect the type of visualization mapping selected and the visual

attributes used for rendering.

Level of Expertise: Scientists who are interested in using visualization

as an analysis tool come with many different levels of experience. For exam-

ple, some scientists are extremely knowledgeable about visualization and enjoy

creating several different representations of their data, some of which are very

complex. Others are interested in only generating simple images. The com-

plexity of a visualization mapping should correspond to the experience level of

the scientist. Many simple visualization mappings are easy to interpret, based

on intuitive physical models. However, the some mappings used to visualize

vector or tensor fields (i.e., vector field topology [27] or tensor field visualiza-

tion [17]), are complex and require training on how to interpret the resulting

visualizations. The use of these mappings is very valuable for the scientist

who is willing to invest the time to gain the additional information they can

offer. More complicated visualizations may be suggested to the scientist as

they gain experience with the data.

Familiarity with Data: Another dimension of the user model is the sci-

entist's familiarity with the data he/she is analyzing. If the data is completely

new to the scientist, he/she is probably interested in viewing simple represen-

tations of the data, preferably in a highly interactive and exploratory mode.

If the scientist is familiar with the data, he/she may want to see a more so-

phisticated visualization to bring out features that have not been seen. These

sophisticated mappings might require more computational resources to gener-

ate. A good example is volume rendering, which can consume several minutes

of compute time. A "committal factor" on the part of the scientist is associ-

ated with his/her familiarity with the data. If the scientist is closely analyzing
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a specific dataset and is committed to understanding it very well, he/she is

more willing to wait to view such a representation. On the other hand, if the

scientist is exploring his/her dataset, he/she will be more interested in rapidly

generated visualizations.

The user's physiology may influence the color schemes and manipulation

methods used for visualization. The following is a description of some of the

physiological attributes of a user model, based on work by Domik and Gutkauf

[21, 29]. These aspects of the user model have not been implemented in MDV.

However, they are the basis for future work in generating a more complete

user model for the MDV system. The following three attributes influence the

selection of visual attributes in the design of a visualization.

Color Perception: The perception of color is a very subjective, cognitive

ability that differs for every user. Color perception can be affected by color

deficiencies, gender, ethnological information, output medium and the user's

environment (i.e. lighting in the room). For example, color deficiencies, which

are caused by missing color receptors in the retina of the user's eye, can affect

the way users perceive different colors. The three types of color blindness

are protanopia (missing long receptor), deuteranopia (medium receptor) and

tritanopia (short receptor). Protanopia and deuteranopia are most common

and occur in approximately eight percent of the male population and one

percent of the female population. The standardized Farnsworth-Munsell color

test can be implemented on a CRT device to test for this difficulty. Color

deficiencies cause "confusion lines" in perceptual color space [46]. To manage

such a deficiency, specialists suggest creating color tables orthogonal to these

confusion lines.

Color memory: When interpreting data via visualization, the scientist

must often recognize color and remember it from image to image. The color

memory of a user is their ability to recall these colors and remember dis-

tinctions between colors for semi-quantitative analysis. Humans are able to

distinguish as many as 10 million colors [36], provided we have no deficiencies.

However, this is only possible when colors are directly compared with one an-

other. Without direct comparison, the number of colors we can process and

individually identify is much smaller. Color memory tests can be administered

to identify which colors a user remembers most accurately. This information

can then be applied in selecting colors and color scales to be used in future

visualizations.
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Color ranking: Ranking colors involves associating their perceived color

with either ordinal or quantitative values. A common example is the use of

reds, yellows and oranges to represent hot values in a temperature scale, while

blues represent cool values. Since human perception has no inherent ranking

of colors, most of these associations are learned from either natural phenomena

or from standard mappings in one's own discipline. If these rankings can be

identified, then appropriate scales can be created for the individual to help

them to analyze data.

The simplified user model for the MDV project incorporates only a subset

of the user attributes described above. User information was collected in

an explicit user modeling fashion, by directly interviewing scientists. This

information was incorporated into the user model and is accessed according

to the username of the individual currently working on the MDV system.

The attributes incorporated in MDV include the background characteristics

of the scientists performing the fluid/structure simulation. These attributes

include information about conventions in the fluid dynamics and structural

dynamics domains. Preferences of the individual scientists include their choices

for colormaps. "Level of Expertise" and "Familiarity with Data" are not yet

incorporated, as the set of visualization mappings currently available in MDV

is still very limited. The scientists are assumed to be novice users with little

familiarity with the data. The user model does not take into consideration

the physiological characteristics of the users, nor does it attempt to model

any additional characteristics at great length. The purpose of the skeletal

model is to understand how a user model integrates into the overall framework.

Future work will involve expanding this aspect of the framework, incorporating

additional information about scientists that might be relevant to the behavior

of the system.

3.3 The Machine Model

This section describes the machine model and its role in the visualiza-

tion assistant. Similar to previous sections, this section defines and describes

the machine model, its implementation in the MDV system and the machine

attributes contained in the model that influence the design of a visualization.

3.3.1 Definition and Purpose

The machine model details the capabilities of the computing environment

available for scientific use, including both software and hardware resources.

The scientist should not be expected to know the characteristics of his/her

hardware and software environment. This information is important, however,
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asit impacts what type of visualization will be appropriate for a givenconfig-
uration. Information will be contained in the machinemodel, specifying the
type of system,monitor resolution,graphicscapabilities,color facilities, CPU,
memory,and availablegraphicslibraries. This model should describea wide
spectrum of machines, from laser printers (for publication) to workstations
to virtual reality systems. The incorporation of the machinemodel makes
the systemvery portable, allowing the scientist to analyzehis/her data using
differentenvironments.

3.3.2 Implementation

MDV incorporates a simplified machine model, describing the current

hardware and software used by the scientist. The information in the ma-

chine model is modeled using the object-oriented paradigm with each hard-

ware device modeled as a specific object. Currently, the MDV machine model

describes only three instances of hardware devices: a workstation, a color

printer and a black and white printer. The workstation object represents a

Silicon Graphics (SGI) Indigo R4000 workstation, and the printer objects rep-

resent a Tektronix color printer and a standard laser printer.

3.3.2.1 Machine Attributes

The properties of the hardware and software environment of the scien-

tist can affect the selection and presentation of a visual representation in many

ways. The following attributes, taken from [39], detail some of the considera-

tions that must be taken into account. These machine attributes influence the

design of a visualization in two ways, 1) the type of visualization mapping to

be selected, and 2) the visual attributes associated with its rendering (i.e. the

colormap, rendering style). A summary of these attributes and their scope of

influence is shown in figure 3.6.

Output Medium: The output medium is the device on which the suggested

visualization will be displayed. The average user takes advantage of several

output media such as the computer monitor (CRT), plain paper printouts, and

transparency printouts. The selected output medium affects the visualization

mapping and visual attributes.

Computer monitors employ additive color generating mechanisms, be-

ginning with a black screen and combining components of red, green and blue

to generate a specified color. Printers, on the other hand, generate colors in

a subtractive manner, beginning with a white or clear page and subtracting

cyan, magenta and yellow (black is also used) to produce the designated color.

The various color-generating techniques can lead to differences in the final
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Machine Attributes Scope of Influence

Output bledium Visualization Mapping, Visual Attributes

Graphics Hardware/Color Visualization Mapping. Visual Attributes

CPU/Memory Visualization Mapping

Figure 3.6: Machine attributes and their scope of influence in designing a visu-

alization. Visualization mapping refers to the type of mapping that is applied

to the data subset; and visual attributes refers to the attributes associated with

the rendering of the visualization.

output image. For example, combining red and green yields yellow on a CRT,

but on a color printer can produce a muddy brown color. Colors that are clear

on the screen are not faithfully reproduced on many color output media. If

the output medium is a black and white printer, the visualization mapping

selected must not rely on the use of color for interpretation. Good mappings

to use in this case are contour lines and vectors, which display the detail of

the data expressively on the output medium.

For an expressive visualization, the background color of the image is an

important consideration and dependent on the output medium. For example, if

transparencies are generated for presentation purposes, areas of interest drawn

in light colors, such as white, may be difficult to see when projected.

The resolution of the resulting image (i.e. pixels on the CRT, dots per

lineal inch on a printer) is important in creating a high quality output that

does not lose any information detail. If the suggested visualization is rendered

to lower quality output medium, such as video, details will become less distinct

and colors will become fuzzy. If the visualization is rendered to higher quality

output medium, such as a 300 dot per inch laser printer, details that are repre-

sented by small dots may become too small to distinguish. The aspect ratio of

an image may be changed when it is reproduced on various output mediums.

This change must be accounted for to ensure that scales are maintained.

Graphics Hardware/Color: CRTs are available with full 24-bit color that

allows for "true" representation of the RGB color space. Lower quality CRTs
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arealso prevalent that use8 bits to depict "pseudo-color". TheseCRTs limit
the rangeof colors that canbe representedand may influencethe color scale
selectedor the type of visualization to bedisplayed. Sophisticatedvisualization
mappings,suchasthosegeneratedusingtexture mapping techniques [13], may

require sophisticated graphics hardware. If this hardware is not available, the

time to produce a visualization may become prohibitive.

CPU/Memory: Visualization mappings that are compute and memory in-

tensive may require a certain amount of CPU power or memory. If this mini-

mum is not available, generating the visualization may become infeasible.

The max:hine model currently describes three devices, a workstation, a

color printer, and a black and white printer as output mediums. Information

about their processing speed, memory, etc. is not included in the machine

model. The machine model aspect of the visualization framework is skeletal

and future work will involve expanding the machine model to provide a more

comprehensive description the scientist's working environment.

3.4 The Knowledge Base

The knowledge base is a collection of assumptions about data, user, and

machine attributes that are relevant to the design of visualizations. These

assumptions are based on principles from perception and graphic design, and

information from the individual scientific domains. The intent of these assump-

tions is to provide the necessary information for making appropriate choices

when designing a visualization. For example, an assumption about the data

object FLUIDS/TIME=0/WING/DENSITY (shown as a leaf node in figure 3.2)

might be that a commonly used color table for viewing density is the spectral

color table. This assumption was taken from fluid dynamics domain knowl-

edge. An assumption about the machine object COLOR PRINTER would be

preferable background and foreground colors to use for the visualization. This

assumption was taken from knowledge in graphic design.

The knowledge base of assumptions is not a distinct entity in the visual-

ization framework. Rather, the assumptions are embedded into the individual

models based on the information source they describe. The assumptions are

considered as additional semantic information and are implemented in the

information models as attributes. Using the examples in the previous para-

graph, the data object FLUIDS/TIME:0/WING/DENSITY contains an attribute

COLOR TABLE that contains the value SPECTRAL to note that an appropriate

choice for color tables is the spectral color table.

The design decision was made to integrate the information models and
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assumptions rather than explicitly stating the assumptions in a separate knowl-

edge base. For the assumptions used in this project, this design decision proved

to be adequate. In the previous examples, the assumptions included in the

knowledge base are relevant to specified objects in the individual models. By

storing the assumptions with the information they modify, a clearer semantic

description of the information and its attributes is achieved. The colocation

of the information models and assumptions reduces the complexity of storing

the assumptions in a different form in a separate knowledge base. In addition,

assumptions are easy to add and modify, since they are easily added to the

models in the form of attributes.

The decision to integrate the assumptions with the models has potential

problems with regard to the management of the assumptions and performance.

Because assumptions are implemented as attributes, they are intended to rep-

resent an assumption about a single information source, such as the data

model. Assumptions that may apply to a combination of multiple sources,

such as the data model and user model, are not represented as easily. For

example, an individual fluid dynamicist prefers to view the density field vari-

able using a greyscale color table. This assumption applies to both the data

model and user model. Although this assumption can be implemented in one

model in terms of information contained in the other model, the represen-

tation is not as simple. The above assumption would be implemented in the

user model representing the individual in terms of information contained in the

data model. The assumption in the individual's user model would state that

if the field variable to be viewed is density, select the greyscale color table. In

addition, because assumptions are spread throughout the models rather than

consolidated into a single model, the process of designing a visualization may

be more time consuming.

The assumptions contained in the visualization assistant are based on

principles from perception and graphic design, and domain knowledge. The

following sections describe these information sources.

3.4.1 Perception and Graphic Design

The knowledge base contains assumptions that contribute to the design

of effective and expressive visualizations. These assumptions are based on prin-

ciples from graphic design and visual perception and the advice and knowledge

of scientists in the different scientific domains.

Principles from information display have been documented by such re-

searchers as Bertin [6] and Wufte [66, 67]. Perceptual rules and graphic design

guidelines are also readily available [16, 19, 37, 39, 44]. Information has also

been collected by researchers specifically for scientific visualization, including
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FLUID DYNAMICS

Position Wirefmm e, Surface

Density

Energy

Contours, Colormap

Contours. Colormap

Momentum Arrow Plot

Velocity Arrow Plot. Streamlines, Streaklines,
Particle Paths, Stream Surfaces

Pressure Contours. Colormap

Tern perature Contours, Colormap

Figure 3.7: Standard visualization mappings for fluid dynamics data.

Senay and Ignatius [60] and Wehrend and Lewis [70]. A sampling of these

principles is presented in Appendix A.

3.4.2 Domain Knowledge

The knowledge base also includes domain dependent assumptions that

influence the design of visualizations. This information includes assumptions

on how to effectively visualize the different data fields of each dataset. Com-

monly used, or standard, visualization mappings for each data variable are

attached to that field within the data model. These standard mappings were

obtained by working with scientists and understanding what types of mappings

are appropriate for different data fields. Examples of "standard visualization

mappings" are shown in figure 3.7 and figure 3.8.

Domain knowledge may also provide information as to an appropriate

color table for visualizing a certain data variable in a certain domain. This in-

formation and addition domain dependent information is listed in Appendix B.

3.5 Designing a Visualization

Designing a visualization is an iterative process that uses the informa-

tion and assumptions stored in the data, user, and machine models and the
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STRUCTURAL DYNAMICS

Position _refram e, Surface

Deformation AnimatioR Line plot

Pressure Contours, Colormap

Stress Contours, Colormap

Nodal Force Discrete Symbols, Arrow Plot

Figure 3.8: Standard visualization mappings for structural dynamics data.

knowledge base. To design a visualization, a visualization specification (to

be described in Section 3.5.1) must be specified by the scientist. Briefly, this

involves designating a subset of the data to be visualized and a visualization

task. Based on this specification, the system extracts the requested data and

assumptions about the data, user and machine environment, and designs and

renders a visualization.

Assumptions from the data model provide initial information on what

type of visualization mapping is most appropriate given the data variables of

interest. Data model assumptions also suggests visual attributes such as a

standard color table for viewing the chosen field data. The selected visual-

ization mapping and visual attributes are modified by the user model where

information on user preferences might select one color table over another. This

result is then modified by the machine model, where additional changes may

be required by the type of output the user has selected. For example, if the

scientist is printing to a black and white printer, the system might suggest

contour lines colored using greyscale values.

If some constraints are violated, the process returns to the data model

where an alternate visualization option is selected. This selection is also mod-,

ified by user and machine models. This process continues until a satisfactory

visualization is found or until the system runs out of suggestions. Once this

information is selected, it is applied to the appropriate data and displayed for

the scientist. The generation cycle is displayed graphically in figure 3.9.

This method for designing the visualization was selected because of its

simplicity and ease-of-implementation. It is not a very sophisticated reasoning

process and could be problematic if the knowledge base of assumptions were
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to grow very large. Currently the knowledgebaseof information is not very
large, sothe processof designing the visualization is not time-prohibitive.

One of the factors affecting performance is that the process of designing

a visualization cycles through the data model, user model and machine model

until a satisfactory visualization is designed. This is clearly not an optimal

solution for designing the visualization. Optimizations should be investigated

so that this process could be made more efficient. An alternate method to

use in the design process would be the incorporation of a knowledge-based

system that contained a reasoning engine. This option is discussed further in

section 4.1.1.

3.5.1 Visualization Specification

The visualization specification establishes the visualization goal of the

scientist. The visualization specification contains two components. The first

component is the selection of the data subset to be displayed. The second

component is the selection of the task to be applied to the data subset. The

visualization specification should be processed quickly and the scientist should

be presented with a visualization that satisfies the query. The scientist should

not be required to learn a complicated query language to create the visualiza-

tion specification.

3.5.1.1 Data Subset Selection

The scientist must select the subset or portion of the dataset which they

would like to view. The physical domain, timesteps, components, grid subset,

and field variables are all part of the data subset specification. The selection of

the data subset consists of two parameters, "scope" and "focus of attention",

taken from Roth [28]. The first parameter, scope, selects the amount of data

one wishes to view. In MDV, selecting the scope involves selecting the physical

domain, timesteps, components and grid subsets of interest. "This process

reduces the amount of data to be visualized to a manageable amount. The

second parameter, focus of attention, selects which attributes of the data the

user wishes to view. This selection involves choosing the physical variable of

interest, such as pressure or stress.

3.5.1.2 Task Specification

Many systems and research projects, such as [3, 14, 39, 70], state the

need to describe the task or interpretation aim the scientists is interested in

accomplishing. The task or interpretation aim asks the scientist questions such

as "What am I trying to accomplish by viewing this data?", "What do I hope

to learn from this data?" and "What do I want this data to show me?".
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From the researchmentioned in the previous paragraph, two levels of

task specification have been established. The first is a low level, detailed spec-

ification that involves identifying the relationships the scientist is interested

in extracting. The second is the high-level, goal-oriented accomplishment that

the scientist is interested in performing.

Low-Level Task Specification Low-level task specification involves identi-

fying very basic relationships between data points or regions of data. Wehrend

[39], defines user's visualization goals as the information the scientist is expect-

ing to learn and communicate in his/her data. These goals include: identify,

locate, distinguish, categorize, cluster, rank, compare, associate, and correlate.

Keller and Keller [39] list the following tasks within visualization: comparing,

distinguishing, indicating direction, locating, relating, representing values, and

revealing objects.

High-Level Task Specification High-level tasks identify common opera-

tions performed by scientists during their data analysis sessions. These tasks

can best be identified by examining typical usage scenarios performed by the

scientist, such as was done in section 2.3.2. It was determined from these sce-

narios that within the scientific domains visualization is often used to perform

high-level tasks such as DEBUGGING, EXPLORATION, ANALYSIS and PRESEN-

TATION.

The DEBUGGING task is an essential part of the development process

where simple visualizations (such as wireframes) are presented to help debug

areas of code. EXPLORATION involves a trial and error process with the data,

and interactivity is important. ANALYSIS is a study of known relationships,

which may require metrics or some precise means of measurement (i.e. inte-

grating qualitative and quantitative representations). Finally, the PRESENTA-

TION task requires aesthetic, annotated and intelligible graphics. In addition,

the size of the audience is typically larger, so the use of complex visualization

mappings should be used carefully.

The MDV system approaches the task specification from the high-level,

because feedback from scientists suggested that the low-level task operators

were difficult to apply to their data analysis goals. The high-level task op-

erators specified are undoubtedly only a subset of the tasks performed by

scientists. These four operators are also very simplified and may not suffi-

ciently describe the task the scientist has in mind. Finally, because the data

analysis task of the scientist is difficult to capture, the four tasks selected for

implementation may overlap in their functionality. For example, the scientist

may not be able to distinguish when he/she is interested in EXPLORATION

or when he/she is interested in ANALYSIS. Also, the scientist may progress
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from EXPLORATION to ANALYSIS using a single visualization and may not be

interested in designing another visualization. The issue of determining tasks

is a complex one that will involve a great deal of study into the way scientists

interact with their data.

3.6 Summary

This chapter presented the visualization framework, describing the nec-

essary components for creating a visualization assistant. The basic framework,

consisting of a data model, user model, machine model and knowledge base,

can be incorporated into the design of any visualization system regardless of

the application domain. Included in the descriptions of the models was the

identification of the attributes in the data, user and machine models that af-

fect the design of a visualization. Most of these attributes are general and

can be incorporated into the framework as necessary for different application

domains. An analysis of the specific application domain will reveal additional

attributes that influence the design of visualizations for that domain.

The object-oriented model was selected over other modeling paradigms

because its modeling capability is superior for handling hierarchical, multidi-

mensional, scientific data. For example, it is difficult to handle the simple

interrelationships found in a two-dimensional array using the relational model

[5]. In addition, it is difficult to capture semantic information about the data

using the relational database model. The special purpose Fiber Bundle model

does not contain mechanisms for handling semantic information. Semantic in-

formation is necessary for describing the data attributes that guides the design

of a visualization.

The purpose and contents of the knowledge base was also presented,

identifying the sources of visualization knowledge to be used for visualization

design. The information in the knowledge base, specifically, information from

perception and graphic design, could also be applied to different applications

since it is based on basic principles. Domain dependent knowledge is also

essential and must be gained in order to select appropriate mappings and

visual attributes.

Finally, the process of designing a visualization, as performed within the

MDV system, was defined. The first step of this process requires the scientist

to specify the subset of data to be visualized and the data analysis task. Data

analysis tasks were extracted based on the scenarios defined in section 2.3.2.

High-level tasks, such as DEBUGGING, EXPLORATION, ANALYSIS, and PRESEN-

TATION, were used to define the goal of the scientist using the visualization

tool. The use of high-level, instead of low-level tasks, is in contrast to previous

research done in the development of automated presentation and visualization
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tools. The tasks selected were based on user feedback and analysis of typi-

cal operations performed by scientists at the high-level. The tasks selected

were not comprehensive and somewhat overlapping in function. This aspect

of task selection is understandable, however, as the set of tasks performed by

the scientist is representative of a continuum rather than a discrete set.

The visualization design process was useful for the initial prototype.

However, it was evident that for a production system this method may not

be sufficient for reasons of performance and knowledge management capabil-

ity. Other mechanisms for managing the necessary knowledge may be neces-

sary, such as the use of a commercial knowledge-based system. The use of

knowledge-based systems is considered and a further discussion on implemen-

tation is presented in section 4.1.

74



CHAPTER4

THE MDV PROTOTYPE

This chapter discusses the implementation of the visualization framework de-

scribed in Chapter 3. A description of the programming environment selected

for the project is presented. The final product, MDV or MultiDisciplinary

Visualizer, is then described, detailing the functionality of the system and its

user interface.

4.1 Implementation Environment

To implement the MDV prototype, it was necessary to choose an envi-

ronment that possessed the following characteristics:

1. Support for modeling the visualization framework described in Chap-

ter 3;

2. Capability to handle large, multidisciplinary scientific data;

3. Reasoning mechanisms to manipulate the information in the framework

for visualization design;

4. Visualization functionality to render and interact with designed visual-
izations.

To meet these diverse requirements, two options were considered: the use of a

knowledge-based system and the use of a visualization programming environ-

ment. These options are presented in the next several sections, followed by a

section on the environment eventually selected for the visualization assistant.

4.1.1 Knowledge-Based Systems

Several knowledge-based systems are available commercially or in the

public domain, including KEE [1], KL-ONE [11], and CLASSIC [51]. Im-

plementing the visualization assistant using a knowledge-based system would

have been a feasible approach. Knowledge-based systems provide mechanisms

for modeling and managing data and knowledge as well as reasoning engines

to manipulate the knowledge.

For example, the KEE system, developed by Intellicorp, uses a frame-

based representation for modeling data and knowledge. The frame-based ap-

proach is similar to the object-oriented paradigm, modeling related informa-

tion in a high-level, abstract manner. Typical frame language constructs rep-

resent classes, attributes, and methods. Frames can describe data or they



can contain forward and backward chaining rules relevant to the data. Frames

containing rules have premises, assertions, actions and control parameters that

are stored as slots (attributes) and provide reasoning functionality.

Implementing a visualization assistant, such as MDV, would be feasible

using the KEE system, representing data, user, and machine characteristics

with frame-based constructs. Visualization assumptions could be implemented

using the constructs described for managing rules.

The work performed by Ahmed, et al. on the Intelligent Visualization

System (IVS), is an example of a knowledge-based approach to the design of

a visualization assistant. In the IVS, the CLASSIC knowledge-based system

was used. CLASSIC maintained rules regarding the construction of data-flow

networks. These networks were then input into the AVS system for visual-

ization. A separate data model (fiber bundle model) was used to manage the

data.

The advantages to using a commercial knowledge-based system are evi-

dent. The software framework is already available for the visualization design

process. The information specified in Chapter 3 could be modeled using con-

structs available in KEE. The KEE system is well suited for handling the

visualization knowledge, or assumptions, and using it to design visualizations.

KEE is also suited for large amounts of knowledge, using a relational database

as its back end. As the assistant expands its knowledge base, KEE would

be able to manage the additional information. Finally, since KEE has been

developed and optimized to handle knowledge in a frame-based format, KEE's

reasoning mechanisms are likely to be efficient.

However, some disadvantages are also evident. Although KEE supports

large amounts of frame-based information, it is unclear if KEE would be able

to manage the large datasets associated with scientific data. Knowledge based

systems are typically suited for a large number of small records, but not neces-

sarily for large chunks of scientific data. Using a knowledge-base system such

as KEE may have required the incorporation of additional software to store

and manage the data. In addition, visualization software would also have to

be integrated with the knowledge-based system for presenting the designed

visualization to the scientist. The resulting visualization assistant would be

a collection of software tools that have to communicate information and data

amongst each other. The additional overhead in integrating several systems

could jeopardize performance and increase complexity.

A knowledge-based system, such as KEE, directly met two of the four

requirements specified at the beginning of this section for the implementation

of the visualization assistant: the modeling capability (item 1) and reasoning

capability (item 3). The knowledge-based approach did not possess visualiza-

tion functionality and it was unclear if data management capabilities would
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be acceptable.

4.1.2 Visualization Environments

An alternative implementation option for MDV was a visualization pro-

gramming environment. Several visualization environments are available that

allow programmers to build visualization modules. These include systems

such as FAST, Explorer, and AVS. However, these systems do not have the

capability to incorporate the information described in Chapter 3.

A visualization environment must provide the features of a programming

environment coupled with data management and visualization primitives. An

object-oriented visualization programming environment would keep the sys-

tem conceptually simple. In addition, this type of environment would tightly

integrate the data model and visualization mappings for better performance in

handling data and computing and rendering visualizations. Transfer of data

and information between the visualization framework, the knowledge-based

system and the visualization system would not be necessary.

The SuperGlue [35] environment, designed specifically for creating flex-

ible visualization applications such as the MDV visualization assistant, was

selected for implementation. SuperGlue directly met three of the four require-

ments for the implementation of the visualization assistant: the modeling ca-

pability (item 1), the capability to handle large, multidisciplinary data (item

2) and the visualization functionality (item 4). The main feature missing from

SuperGlue was the reasoning engine necessary to design the visualizations.

However, because of the prototype nature of the project, it was determined

that this was an acceptable compromise. The knowledge base associated with

the prototype system was small and a simple mechanism for manipulating

the assumptions in the information models was sufficient to develop a proof-

of-concept system. The main concentration was placed on mapping out the

visualization framework and identifying the attributes necessary for designing

visualizations.

4.1.3 SuperGlue

MDV has been implemented in SuperGlue, a rapid prototyping program-

ming environment under development at the NASA Ames Research Center.

SuperGlue is an object-oriented programming environment based on the lan-

guage Scheme [8], a dialect of Lisp.

SuperGlue provides an effective environment for the rapid prototyping

of code due to its interpreted nature. The SuperGlue class mechanism most

closely resembles that of Smalltalk. SuperGlue provides single inheritance and
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dynamic method-lookup based on the message and the class of receiver. Su-

perGlue also provides dynamic typing, allowing each variable to hold values

of any type. Checking for mismatches occurs at runtime. This dynamic typ-

ing capability allows the same piece of code to be used on different types of

data, supporting a rich variety of data types. Automatic memory reclamation

(garbage collection) frees the programmer from keeping track of the storage

used in the program.

SuperGlue provides a large object-oriented class hierarchy, which con-

tains components necessary for generating tools for interactive visualization.

The class system is divided into subtrees which implement generic functions for

visualization. This hierarchy provides classes for data management, process

management, window management and event handling, mathematical func-

tions, visualization mappings, and rendering, among others. Information is

easy to incorporate into the SuperGlue hierarchy, making easily extensible as

the application's functionality and information base grows.

SuperGlue has the capability to incrementally load compiled foreign

functions written in traditional languages such as C and FORTRAN. Com-

putationally intensive operations are typically performed in C. Scheme is used

for high level control, management of data objects and for user interface han-

dling.

The performance of the visualization environment is reasonable consid-

ering the large amounts of data to be digested and displayed. By allowing C to

perform computationally intensive operations (as well as graphics operations),

MDV is not hampered a great deal by performance considerations. Optimiza-

tion of the MDV system would produce a more efficient system, however, this

is not a main goal of the project.

SuperGlue uses memory-mapping techniques. As a result, the actual

data is only paged into memory when it is queried by the scientist. This pro-

vides necessary performance when working with large, time-dependent datasets.

The Tcl and Tk [49] package can also be accessed from SuperGlue for the

creation of user interface widgets. Tcl language is a command language. Tk is

an X11 toolkit, written in Tcl, that provides the look and feel of Motif widgets.

Access to the Tk widgets is provided through Scheme commands within Super-

Glue. This accessibility allows for rapid production of user interface widgets

for the visualization software.

4.2 The Final Product

The current system is still a prototype by any standard, but it is func-

tional and available for use by the scientists. It provides scientists with the
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capability to view their data aswireframes,surfaces,contours,colormaps,par-
ticle traces,and vectorplots. The following sectiondescribesthe userinterface
and functionality of the MDV system.

4.2.1 The User Interface

The userinterfaceallowsthe scientiststo specifytheir dataanalysisgoals
at a high level. The systemtakesthe query madeby the scientistand generates
a visualization from it. The query is easily specifiedby the scientist, using a
widget-basedinterface.

MDV can be started from the command line. Upon entry, MDV ob-
tains the scientist's ID and machinename usingstandard UNIX systemcalls.
This information triggers the initialization of the userand machinemodels.
An initialization file is read that resetsthe state of MDV to that of the last

session.The scientistmay then createa visualization specificationfor MDV.
The visualization specificationdesignatesthe subsetof data to be viewed,the
task, and the output medium. The scientist createsthis specification using
the MDV interface,shownin figure 4.1.

NEW DATASET. If a new simulation has been generated, the scien-

tist needs to register it with MDV. Registration is done using the NEW

DATASET button. This action brings up an additional menu that will

prompt the user for necessary information (attributes) about the simula-

tion datasets. The scientist must select a new name for the dataset which

will then be registered and stored under the DATASET NAME menu.

DATASET NAME: The scientist must first select the dataset they are in-

terested in viewing from the available datasets presented in the DATASET

NAME menu. A dataset represents the collection of data files associated

with a simulation run. This could involve many files, depending on how

the data is stored and what types of grids and physical variables are in-

volved. This abstraction simplifies the otherwise tedious process of data

input. A central repository stores the datasets. The data repository is

simply a hierarchical directory system in which a single directory repre-

sents a dataset. Within this directory are all of the datafiles as well as

a description file that contains the necessary metadata for that dataset.

This description file is generated by asking the scientist several questions

about the dataset when he/she enters it into the system. Future work

will involve distributing this central repository so that larger datasets

can be visualized.

FLUIDS OBJECT/STRUCTURES OBJECT. Upon selection of a dataset,

the scientist must select which components they are interested in viewing.
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Figure 4.1: The MDV user interface.
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This aspect of the visualization specification determines the subset of

data to be visualized.

FLUIDS VARIABLES/STRUCTURES VARIABLES. The scientist must se-

lect the physical variables he/she is interested in viewing. For example, if

the scientist is interested in viewing the fluid flow around the deforming

wing, he/she would select "Fluid Variable: Velocity" and "Structures

Variable: Position".

• TASK. The second component of the visualization specification is the

selection of a data analysis task. Currently, the scientist may select from

four tasks: Debugging, Exploration, Analysis and Presentation. These

tasks were determined by working with scientists and understanding the

main types of functions they were interested in performing. Based on

these tasks, different visualization mappings and visual attributes are

selected.

• OUTPUT. The machine model requires input regarding the preferred

output medium so that the machine model can suggest an appropriate

visualization mapping and visual attributes. The current options in-

clude: the screen, a color printer, or a black and white printer. The

machine model contains the printer names of the nearest laser printer or

color printer based on the workstation currently in use by the scientist.

• TIMESTEPS. The scientist is presented with the range of timesteps that

his/her dataset encompasses. The scientist must select all or a subset of

these timesteps as part of the visualization specification.

• VISUALIZE. Upon specification of these parameters, the scientist presses

the VISUALIZE button and an image is generated. The visualization

generation cycle is performed and a visualization is presented.

• CURRENT VISUALS. This menu maintains a list of the visualizations

generated by MDV during a working session. If the scientist is interested

in viewing multiple visualizations simultaneously, the scientist can select

the visualizations he/she is interested in and the visualizations will be

drawn by the system.

• LONG MENU. A more traditional interface is provided to allow experi-

enced users to create visualizations directly.

EXIT. Upon completion of the data analysis session, the scientist can

select this button to exit the system. The state of the system will be

saved for the next session.
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4.2.2 Visualization Mappings

The visualization mappings currently available in MDV are simple, yet

effective, techniques for viewing fluid/structure interaction. Currently, the sci-

entist can view wireframe and surface representations of the geometry of the

simulation; scalar mappings such as contours and color contours; and also vec-

tor mappings such as vector plots, streamlines, and stream surfaces. Scientists

can integrate quantitative information using line plots. These mappings are

simple and intended for basic visualization needs. As scientists (and MDV)

become more sophisticated, more advanced visualization mappings such as iso-

surfaces, cutting planes, vector field topology, volume rendering, and streak-

lines could be included.

4.2.3 Interactivity / Custom Widgets

Interactivity is an important aspect of exploring large datasets. In MDV,

direct manipulation allows the scientist to change viewpoints by rotating, scal-

ing and translating the visualization. The scientist can also override the se-

lections made by the system. Visual attributes such as the color table, back-

ground color, etc. can be changed after the initial presentation is made. These

changes are made using the options in popup menus, which appear when the

scientist clicks the mouse button on a visualization (shown in figure 4.2).

Each popup menu is designed specifically for the visualization mapping

appearing in the scene. Popup menus only contain menu options pertinent to

the visualization that is presented. For example, if a contour is generated, the

popup menu will contain functions that can modify the contour visual such

as adjusting line width or changing the number of contour lines. The popup

menu also presents the scientist with the data value that the selected point

represents. The object-oriented paradigm is helpful in managing the popup

menu specifications. Information from the data model, visualization mapping

and viewing parameters is used intelligently to assemble the popup menus so

they provide the necessary information.

4.2.4 Data Queries

Information contained in the data model can be extracted by the scientist

by selecting an option on the popup menus associated with each visual. Once

the scientist clicks on the visual of interest, a popup menu appears. They must

select the "Data Info" option and attributes of the data are presented to them

in a text window. This attribute information is stored in the data model.

Data may be queried at different levels within the data model hierarchy.

The first example shows the result of a query to obtain information about
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83



the current working environment. This query is performed by clicking in the

background of the viewing window and requesting MDV INFORMATION. The

result is a description of the current information relevant to the rendered vi-

sualization. This information includes a basic description of the data, the

user, the machine environment, and the visualizations currently rendered in

the window.

mdv :

data:

datadir "/r/win58/u/wk/kmiceli/Data"

dataset hsct/a-29

time (6 120 6)

user :

username pramono

domain struct

level-of-expertise novice

colormap "blue-red. map"

machine :

machine win58

bw-printer im3

color-printer color2

visuals :

fluid-visuals "Fluids PRESSURE COLORMAP ((10 142) (2 2) (1 15))"

struct-visuals "Structures PRESSURE SURFACE"

The second example shows the result of a query to a specific compo-

nent in the visualization. This query was performed by clicking a point of

interest on the rendered visualization and requesting DATA INFORMATION.

This query provides a more detailed description of the data represented by the

visualization, including the data filenames, the timestep value, etc.

struct-data:

components wing

amplification 0

data-fname "/r/win58/u/wk/kmiceli/Data/HSCT/A-29/qs_1.12"

grid-fname "/r/win58/u/wk/kmiceli/Data/HSCT/A-29/grids_l.12"

file-type q

grid-type structured

timestep 12

4.2.5 Explanation Facility

Along with each generated visualization is an explanation describing why

the visualization was selected. This explanation facility allows the scientist to
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understand the reasons why the visualization and its corresponding attributes

were selected. Scientists are more willing to accept (or reject) a presented

visualization if they are aware of why it was selected.

This example shows the visualization mapping and why it was selected

based on a given visualization specification. The task component of the

specification was ANALYZE and the output medium was BLACK AND WHITE

PRINTER. The query was performed by clicking on the generated visualization

and selecting the VISUAL INFORMATION option on the popup menu.

Mapping:

Reason:

CONTOUR-LINES

Contour lines are an effective mapping for a quantitative

analysis of the data. Contour lines show trends and offer

greater numeric precision.

Black and White Contours are easiest to distinguish when

output is a black and white laser printer. Data trends

in a colormapped visualization can be unclear when sent

to a printer.

4.2.6 Long Menu

If the scientist rejects a visualization and prefers viewing the data in

another manner, he/she has that option by selecting a button to return to

a more complex, yet more functional interface. This interface was generated

before the assistant-based system was created to test the functionality of the

underlying system. This interface with all of its panels is displayed in figure 4.3.

4.3 Summary

This chapter presented the prototype MDV system and described its

functionality and user interface. In addition, implementation issues were con-

sidered and trade-offs discussed.

The MDV visualization framework was implemented using the Super-

Glue object-oriented visualization programming environment. The framework

components were tightly integrated with visualization and data management

functionality, which provided a conceptually simple environment for develop-

ing the prototype. Using the object-oriented model was very helpful in man-

aging complex, heterogeneous datasets. Basic visualization primitives were

available in a flexible and extensible environment. Adding information to the

existing framework was simple due to both the object-oriented and interpreted

nature of the environment. Additional factors in choosing the SuperGlue en-

vironment included the availability of on-site support and well as support for

user-interface building tools.
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Figure 4.3: The "Long Menu" in MDV.
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However, there were several drawbacks to using the SuperGlue environ-

ment. First of all, SuperGlue did not have a structured knowledge-base or

reasoning engine to handle the assumptions and design process. This draw-

back had potential affects on the design process, both in terms of performance

and in effectively manipulating the knowledge base of information.

For the purposes of this work, SuperGlue was an effective tool. Since the

contributions of the MDV system were to identify the information necessary for

a visualization assistant, and to develop a user-tested prototype, a simplistic

method of implementation was chosen. The complexity involved in integrating

a knowledge-based system, visualization tools and potentially data manage-

ment features was undesirable. For future projects interested in a larger, more

robust system, the knowledge-based approach should be considered.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

This chapter discusses user feedback gained throughout the design and devel-

opment of the MDV system. Contributions of this thesis work are reiterated,

followed by areas for future research and conclusions.

5.1 User Feedback

The main users of the MDV system were two scientists, a fluid dynami-

cist and a structural dynamicist, involved in performing the HSCT simulation

on the Intel iPSC/860. Both scientists had previously used visualization to

help them analyze their data. Before MDV was available, they used several

different tools over the course of their careers to visualize their results. The

tools allowed them to create plots and visualizations of data from their in-

dividual disciplines. However, they did not have any tool to visualize their

disciplines simultaneously. As a result, they were very interested in the design

and development of MDV.

Feedback from the scientists was gained through daily contact, demos

and interviews. This information is presented in the next sections.

5.1.1 Daily Contact and Demos

The simulation scientists were located in the same building, which was

helpful in establishing a strong communication link. Daily contact usually in-

volved discussing topics such as the current state of the MDV project or the

current state of the HSCT simulation effort. When discussing MDV, issues

about data management, functionality, or interface design were typically dis-

cussed. When discussing the simulation effort, problems with the simulation

software, interesting features of the simulated data, and implementation de-

tails were discussed. Discussions regarding the current state of the simulation

software led to adjustments or additions to the MDV system to accommodate

the scientists. For example, the scientists were interested in querying data

values from the visualization, the functionality to click on a point of interest

and retrieve data values was added. Informal discussion was often the catalyst

for new functionality within the MDV system.

Demos were also given to the simulation scientists as well as other scien-

tists and visualization researchers. This provided valuable information about

the "look and feel" of the system. Input from those outside the project proved

valuable, suggesting new ideas or questioning current methods.



5.1.2 Interviews

Interviews were performed at the initial stagesof the designprocess
and upon completion of the prototype. Initial interviews provided critical
information about the data and the scientific domains that was necessaryto
build the visualization system. Samplequestionsand responsesfrom these
interviewsareavailablein Appendix C. Final interviewsweredirected toward
the prototype systemand its userinterface.Questionsfrom the final interview
are available in Appendix D with the scientist's responsesummarizedin the

following paragraphs.

5.1.2.1 Visualization

Scientistswerefirst askedquestionsabout visualization, its role in the
data analysisprocessand the qualities that make a good visualization tool.
Scientistsstated that visualization wasan important part of the simulation
process.The scientists felt that visualization helped them to 1) debug their
simulation codes,2) understandthe physicsoccurring in the simulation and 3)
communicatethe information in the simulation betweenthemselvesand their

colleagues.
Scientistsare interestedin using visualization technologybecausethey

feel it is a helpful tool for data analysis. However,if a visualization systemis
complicatedto useand comeswith largemanuals,scientistsare lessinclined to
useit. Evenonline help is unattractive, exceptfor preciseanswersto questions
about systemfunctionality. The initial steepnessof the learningcurve in using
visualization systemsoften preventsscientistsfrom using tools that could be
very valuableto their research.

The important factors in using a visualization systemare easeof use,
functionality and performance. To usea system, the scientist must be able
to sit down immediately and do productive work. Easeof use is the first
attraction of a good tool and is especiallyimportant whenthe tool is new to
a workingenvironment. If a tool is difficult to useand productive work is not
accomplishedin a short amount of time, scientistswill return to old methods
and relay their experiencesto colleagues.

As the scientist evolvesfrom a novice to an expert user, the system
functionality becomesmore important, becausethe scientist wishesto per-
form more complex operations. Performancealso becomesmore important
throughout this cycle, asthe scientist will be uninterested in using a tool if
the resulting visualizations take too long to generate. However,scientistsare
willing to wait short periodsof time, if the resulting visualizationsare worth
the wait and providea different insight into their data.
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5.1.2.2 The MDV Visualization Assistant

When discussing the MDV system, the scientists were presented with

the goal and basic concepts behind its development. The goal of the system

was to make the visualization process more productive through the use of a

knowledge-based visualization assistant. They were very responsive to the

MDV design and agreed that if creating visualizations were an easier process,

it would help them to be more productive. They were not visualization experts

and they didn't intend to become experts to visualize their datasets.

Scientists currently must select from a "grab-bag" of visualization map-

pings. They often "make do" with tools they are familiar with, regardless of

whether these tools express the information content they are looking for in

their data. They believed that a system that helped them to select an effec-

tive and expressive visualization would remove the trial-and-error process they

currently use.

Scientists were then asked specific questions about the MDV system. The

scientists understood the complexity involved in multidisciplinary simulations,

given the different data from different disciplines. This data management

issue involved integrating many different files involved in a multiple timestep

simulation as well as different data formats. The scientists stated that if they

had to deal with data management themselves that they probably wouldn't

use the visualization system. If data management could be handled by the

visualization system, it would be much more attractive to use.

Perhaps the aspect of MDV that they appreciated most was the data

management function incorporated into the DATASET NAME button. They

were pleased with the data management aspect of MDV, which only required

them to enter information about the dataset once. When referring back to

that dataset, they selected the dataset alias representing the collection of files.

This capability alleviated the tedious process of entering and managing the

data files. The ;number of data files can be approximately one-hundred for a

small simulation with forty timesteps. This aspect of the system alone would

help increase productivity.

The scientists were generally comfortable about the querying mechanism

that required them to input their data analysis task via high level abstractions.

They were a bit confused by the process, since most of the tools they had used

were much different from the MDV interface. Specifying the task they were

interested in performing was a bit unusual to the scientist. They were not

sure of the purpose of the TASK button until it was explained to them and an

example was given. They said that the example made sense, but they were

unsure of specific tasks they they attempted to accomplish while visualizing

their data. For the most part they were just interested in viewing the data
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and querying it interactively.
The OUTPUT button was well received. The scientists agreed that knowl-

edge about the output medium would be helpful in producing an expressive

visualization. They also wanted the system to automatically generate relevant

annotation and send the visualization to the appropriate device for printing.

If the process of creating output could be automated, they felt it would save

them time.

The automatic selection and generation of the visualization mapping was

also a bit awkward to the scientist. They felt that having the system generate

the first cut of the visualization was a good idea, especially when they were

just exploring their data and wanted the visualization to be generated quickly.

However, they were concerned that they might not be able to modify the

visualization in case they were interested in viewing a different representation.

They wanted access to the more functional interface readily available should

this be necessary.

Custom widgets were provided to the scientist to query the data and give

quantitative information to the otherwise qualitative images. The scientists

were very pleased by this capability, allowing them to interact with their data

and determine if their simulation was correct and if the data values made

sense.

In general, MDV was well received by the scientists. They were able

to test the interface and generate visualizations in a short amount of time.

The user interface was not overwhelming and they could figure out how to

use it almost immediately. They were happiest about the data management

aspects of the system, relieved that they didn't explicitly have to input the

large number of datafiles comprising the simulation. They Mso acknowledged

that the help from the interface gave them the first step into viewing data

from different disciplines, without having to know anything about visualization

mappings within that discipline.

The scientists stated that a visualization assistant would make their data

analysis process more productive, by helping them to generate effective and

expressive visualizations in a short amount of time. They agreed that using

MDV would help them produce results more quickly and easily than any other

visualization tool.

The MDV system provided scientists with a tool to simultaneously vi-

sualize data from the fluids and structures domain. As far as we know, there

is no other tool that can currently perform this task. Scientists relied on the

images presented by MDV to help them study the results of their simulations.

They often used the results they produced for presentations and publications

[50].

91



5.1.2.3 Design Concerns

Some concerns were also uncovered by the scientists with regard to the

MDV system and visualization systems in general. Some of these concerns were

minor and involved easy-to-fix solutions. Other concerns questioned the overall

design of the MDV system. Most of the minor concerns were handled during

the design of MDV. These included concerns such as the layout of the system,

the functionality of the system and the like. In addition, some knowledge

about the simulation wasn't available to them. For example, information about

where the actual geometry of the simulated vehicle was located within the three

dimensional volume.

Some deeper concerns expressed by the scientists included a loss of func-

tionality due to the limited capabilities of the visualization assistant. The

scientists felt that the system would fit their needs in the early stages of data

analysis, when they were unfamiliar with the system and didn't have clear idea

of what they wanted to accomplish. In this scenario, the system would save

them time and help them create effective visualizations. However, .as they be-

came more advanced users who wanted to accomplish more sophisticated data

analysis goals, the visualization assistant might not be able to satisfy these

needs and "get in the way".

Clearly, the visualization assistant approach is intended for users who

are unfamiliar with tools and want to take advantage of the knowledge the

system contains about visualization. However, as the scientist becomes as

familiar with the system and visualization as the assistant, then the need for

the assistant decreases. However, the assistant can still play a valuable role,

albeit a lesser role. Rather than automatically selecting and generating a

visualization, the system might only provide the expert with suggestions via

a help window or something similar. The differentiation between novice and

expert user could be incorporated into the user model and MDV would adjust

its actions accordingly depending on the scientist's level of expertise.

Another issue of concern addressed by one of the scientists was that _/

complete knowledge-base of information could not be easily maintained on the

simulated data. This concern stems from the disjoint three step simulation

process that involves grid generation, field solution and post-processing data

analysis (which includes visualization). Because the visualization aspect of

this three step process is separate, knowledge gained from the two previous

steps cannot be easily incorporated for use by the visualization system. This

information includes special properties of the grid and the field solution that

might be helpful during visualization. This high-level information is difficult

to transfer to the visualization system.

A more advantageous approach to develop more productive tools for
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simulation scientists would be to incorporate the three steps of the simulation

process into a single integrated system. Within this system, an assistant could

guide scientists with the entire process and at the same time maintain all the

design decisions involved throughout. However, this is a major undertaking

involving a great deal of complexity and knowledge. The MDV visualization

assistant takes a small step towards the development of such a system. The

ideas generated by the MDV system could be applied in a larger scale system

that incorporated grid generation and field solution. The concepts of data

model, user model, and machine model would still hold for this larger scale

system. The data model would contain information about the simulated geom-

etry and all the associated data, complete with information describing special

regions of the geometry of interest to the scientist. The user model would con-

tain information about the user, and would influence the level of automation

or the type of visualizations presented to the scientist. The machine model

would contain information about the hardware available for computing field

solutions, the field solution software available, hardware and software for visu-

alization, etc. The knowledge base would contain information about the grid

generation, field solution and visualization disciplines, as well as knowledge

gained through the course of the design and simulation process.

5.1.2.4 Implementation Concerns

Other concerns expressed by scientists dealt with implementation issues,

which do not directly reflect on the design of MDV, but did impact the scien-

tists. The current implementation of MDV was performed on a single work-

station. This workstation only had the ability to process 20 timesteps of the

HSCT simulation. While this provided the scientist with enough information

to study their results sufficiently, a system that was able to handle larger

datasets would be beneficial. Future work may involve adapting MDV so that

it could access the large datasets via a distributed file system. In addition,

performing some of the computationally intensive work on a supercomputer

would save the time spent on computing contour lines, etc on the workstation.

The base of users for feedback on the MDV system was small, but since

the fluid/structure application was so specialized, not very many scientists

were available. In addition, due to the participatory nature of the design pro-

cess, it would have been difficult to interact with more than the two scientists.

Input was solicited from other researchers not performing multidisciplinary

simulations, although they were not users of the MDV system. Future efforts

will include contacting other researchers in the field so that they might be able

to take advantage of the software and provide additional feedback.
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5.2 Contributions

Many visualization systems are complicated to use, with many com-

mands, buttons and widgets. A great deal of research has been put into the

development of new visualization mappings and a lot of work put into creating

a general-purpose visualization tool. However, most of the focus in develop-

ment these systems has bypassed the user interface. This research demon-

strates a new style of interface to help scientists deal with the complexity of

data analysis.

The contribution of this work comes in two parts, a high-level foundation

and a user-tested implementation. In the design of the visualization assistant,

the development of a structured framework is required to define the neces-

sary components that must comprise such a system. The development of this

framework provides a structure from which future systems can be built and

expanded. This structured approach to visualization, as opposed to current

ad hoc approaches, is a step towards understanding the visualization process

as a whole.

The development of a visualization assistant helps create effective visu-

alizations for the scientist. Effective visualization leads to more accurate in-

terpretation of the data since knowledge from various domains such as graphic

design and visual perception goes into the development of the representation.

This knowledge is typically not possessed by the scientist who often relies on

the help of a visualization expert. By freeing the scientist from having to

consult with this expert, the visualization process can be made more produc-

tive. The visualization assistant approach is a significant contribution to the

design of visualization systems in that it makes visualization technology more

accessible to the typical scientist.

This research acknowledges the need to incorporate information from

many different sources in order to create a useful visualization assistant. The

information models and the attributes associated with them provided infor-

mation regarding what factors influence the interpretation of visualizations.

These attributes and their influence should be considered for any visualization

task.

Although the visualization assistant was developed with multidisciplinary

computational aerosciences data as the application, the framework and con-

cepts in the framework could be applied to many different disciplines. Multi-

disciplinary visualization is necessary in many application domains, including

medicine and environmental studies. The visualization programmer can learn

from these ideas in developing new applications that provide the scientist with

a productive and effective tool.
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Data management in the visualization field has recently become recog-

nized as a critical technology in the development of visualization tools [5]. As

a result of the larger and more complex datasets that scientists are producing,

visualization researchers have acknowledged the need for more sophisticated

methods for data management. The object-oriented approach is a possible

solution to the management problem. The object-oriented model is useful in

modeling the data complexities, complete with syntactic and semantic infor-

mation about the data.

The specific application chosen for this thesis was an excellent example

of the complexity involved in analyzing current simulation datasets. The mul-

tidisciplinary nature of the application emphasized the need to develop tools

that incorporated domain knowledge so that scientists of different disciplines

could work with each other's data interchangeably. However, the visualization

framework and the visualization assistant specified in this thesis could be ap-

plied to any application domain. The components of the framework are basic

and central to anyone wishing to use visualization technology.

Although work has been done in encoding information about graphical

representations, this project attempts to codify this information in such a way

that it can be applied to visualization systems. The research presented in this

thesis builds on the foundation set by the previous research projects mentioned

in Chapter 1. It expands on this research by modeling the components that

comprise the visualization process. As a result, the necessary information

for generating effective graphics is available. This research emphasizes the

importance of a data model and corresponding data attributes that influence

the creation of effective and expressive visualizations.

By incorporating a data model, this work emphasizes data management

and representation issues that have been missing from most visualization sys-

tems. The data model incorporates knowledge about the data as opposed to

defining data structures that merely store the data. These abstractions allow

the scientist to view the data in their own terms and not in the form of data

structures defined by computer scientists. It also allows the system to develop

effective visualizations based on this knowledge. Current systems lack data

models that contain the high level knowledge that can assist the scientist with

their data analysis. The object-oriented paradigm is used as the basis for the

data model. The object-oriented paradigm allows for modularity, code reuse,

expandability and the capability to derive data using methods.

This solution addresses the challenge of organizing and managing multi-

ple, heterogeneous data sets and their resulting visual representations. Since

multidisciplinary simulations will be more common as computing technology

advances, this type of system must explore data management issues. Data

management has finally been recognized by the visualization community as
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an essentialcomponentof any visualization system. This project attempts
to addressthe data managementissueby incorporating object-oriented data
modelingtechniques.

5.3 Future Research

MDV is under development and the current system is a very basic imple-

mentation of what is necessary to create a useful visualization tool for general

use. A great deal of work has to be done in defining each component of the

design framework, especially the data model. To develop this system to meet

the given criteria, emphasis on the design of the framework is essential.

Future research plans include incorporating full user and machine mod-

els that take into account the task at hand as well as the varying types of

input and output devices available to scientists. This effort will complete the

characterization of the visualization environment and demonstrate the impact

that each of these components has in the development of visualization sys-

tems. Finally, due to the large size of the data sets that will be encountered,

database-oriented issues will need to be addressed. A distributed, persistent

object database derived from the original data model would be valuable for

managing large multidisciplinary data sets.

The further development of the user model and the machine model will

help to include information about the scientists using the system as well as

the specific machine requirements they have. The development of user models

for user interface design is a research topic in its own right. This aspect of

the system will undoubtedly require an iterative approach as well as close

collaboration with application domain scientists.

Establishing the task the scientist is interested in performing is a critical

component of the intelligent system. This aspect is currently being studied by

interacting with the scientists and asking them to express their visualization

goals. The generation of a task dialogue will eventually be integrated into

the system, so that the scientist can specify which data they are interested in

viewing as well as the goal of their data analysis task.

Finally, the continued addition of knowledge from the scientific domains,

perception and graphic design will be an important part of future development

efforts. These efforts will involve consulting with literature and with experts

in the field in developing rules for effective data visualization.

Additional applications of this approach could be seen in the larger scale

of the simulation process, assisting the scientist not only with the visualization

aspect of the simulation, but also with generating the initial geometry and

grids, selecting the appropriate solution scheme to solve the desired fields, and

finally, aiding in the visualization of the results.
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5.4 Conclusions

Visualization is becoming an increasingly complex tool for data analysis.

This increase is due to the complexity of datasets, their increasing size and new

research into tools and mappings. It is evident that this increasing complexity

could drive away the most important customer of the visualization technology,

the scientist. Often, developers of visualization tools do not consider usability

issues when developing tools for use by scientists.

The development of easy-to-use visualization tools to deal with the com-

plexity must be a critical concern to developers creating visualization tools.

The key to this development is the abstraction of complexity using advanced

modeling concepts and computer science technologies as seen in object-oriented

design, databases, artificial intelligence and user interface studies. By taking

advantage of these multiple disciplines in visualization, which is inherently a

interdisciplinary research area, the success of these tools can be more easily

accomplished.

The work in this thesis addresses this issue of abstracting complexity

from the visualization process. The application chosen for demonstration is

one that is probably on the high-end of the list in terms of complexity, so

payoffs can be readily seen. However, the framework presented can be applied

to any application in achieving a productive data analysis tool for scientists.
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APPENDIX A
SELECTED RULES FROM PERCEPTION AND GRAPHIC

DESIGN

Basic rules have been incorporated into MDV on the use of color in displays

and for visualization purposes. These rules were obtained from [19, 39, 44, 60],

who in turn gathered their information from many different sources.

.

.

,

.

.

Color Perception

Colormaps may carry unintended meanings; therefore, use colormaps

with care. It is best to use familiar colormaps. For example, astronomers

use color scales where red represents faint stars (low values), yellow repre-

sents brighter stars (medium values), and white represents the brightest

stars (high values). This is different from Earth scientists and geologists

who use color scales where blue represents oceans (low values), green

represents forests and meadows (medium values), and brown represents

mountains (high values). When in doubt, use spectral ordering in col-

ormaps; viewers see spectral ordering as a natural one. Greyscale is also

another good choice as it has a natural visual order.

Use additional cues to delineate shape, such as contour lines, when col-

ormapping scientific data. Outlining the colormapped data helps the eye

to distinguish between two colors.

Use a sudden color change to mark a critical level. The abrupt change of

color signals the preattentive vision of the viewer. Preattentive vision is

the instantaneous, effortless part of visual perception without focusing

on local detail[16].

For presentations in a dark room: select sharply contrasting colors.

Background dark colors such as dark blue appear to recede, and yel-

low or white text stands out and provides contrast. Pastels and bright

colors are good choices for data. For presentations in a light room, use

lighter colors for the background and darker colors for text.

Be careful in displaying colors of low intensity (i. e. blue and black) close

together if a distinction between the two colors needs to be made. It is

difficult to distinguish between these colors. The same rule applies with

high intensity (i. e. white and yellow) colors close together.

Because cones that detect short wavelengths l[ie in outer regions of the

fovea, blue (short wavelength) is a good color to use in the periphery of

a display. However, blue is a poor choice for the display of small objects

because the lack of short wavelength cones in the fovea. Other good

colors to use in the periphery include black, white, and yellow. Red and



.

.

A.2

1.

2.

.

,

.

.

green are good colors to use in center of visual field, due to the greater

number of red and green cones in the center of the fovea.

Use perceptual color scales such as Hue, Lightness, Value (HLS), Hue,

Saturation, Value (HSV), or CIELUV (perceptually uniform color space

[26]) instead of RGB to aid with perception.

Color in the interface should be used carefully. Confusion might result

if color is used to group menu items and also display elements.

Graphic Design

Avoid using color that does not add or support meaning of data.

Greyscale and black and white encourage simplicity and remove the com-

plications that may arise due to the physiological, psychological, or print-

ing side-effects of color.

Lines are helpful to show connection and relationships. They separate,

highlight, focus, and indicate direction. Increased line thickness is typi-

cally an indication of importance.

A general principle for annotation is to use little, but make it meaningful.

The text size in annotations should vary according to the importance of

the object it identifies. The text style should be simple, legible and
uniform.

If the intended audience is broad, use a less complex representation. Sim-

ple images are best for communication. If the audience is well-informed,

more complex images may be used.

Use horizontal, or landscape, orientation if possible. It is often preferred

because it corresponds to the normal field of vision.
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APPENDIX B
SELECTED RULES FROM SCIENTIFIC DOMAINS

B.1 Fluid Dynamics

The multidisciplinary simulation will help fluid dynamicists to under-

stand how the deforming body of the HSCT affects flow characteristics. Char-

acteristic visualization mappings and attributes were gathered from literature

and interaction with scientists.

°

.

.

.

Data is commonly colormapped using the spectral color scale with color

ranging from red (high) to yellow (freestream conditions, average condi-

tions) to blue (low).

Scalar velocity magnitude is colormapped on the surface using the color

scheme presented above. Velocity is also often colormapped in terms of

its x,y, and z components.

Several gridplanes are often depicted so that a relationships along the

object body can be established.

In order to emphasize shock structure, black contours are drawn on a

colormapped visualization of vorticity

B.2 Structural Dynamics

The structural dynamicist is interested in understanding the deformation

of HSCT and the resulting stress levels on the skin of the vehicle. Presented

below are some of the visualization mappings that are helpful to the structural

dynamicist.

1. Data is commonly colormapped using the spectral color scale.

2. Colormapping and contour lines are most frequently used to show pres-

sure and stress levels.

3. Animation is useful to show the deformation of the vehicle over time.

4. Plots are helpful to show deformation of a point on the grid over time.



APPENDIX C
INITIAL USER INTERVIEW: DATA CHARACTERISTICS

Initial user interviews were held to understand the data that was to be modeled

in the multidisciplinary visualization system. In addition, questions were asked

regarding the type of tools that would be necessary for multidisciplinary data

analysis. The next section is a user questionnaire presented to the scientist.

Following the questionnaire is a response from a structural dynamicist.

C.1 Questionairre

1. Narrative description of data type (coordinate system, special proporties

of the mesh, any information which explains the data type and the reason

why data are stored in specific structures)

2. Definition of terms

3. Size information (how large is a typical data set?, how many data sets?,

number of iterations?)

• How much of the data is fluids, how much structures?

• In what format is data stored?

4. Variable descriptions

• Variables which describe the mesh (structured or unstructured grids,

moving grids, new grid per timestep?)

• Physics variables

• Attribute data (size, shape, rank, conditions of simulation)

5. Methods (how will you want to access your data, methods for operating

on the data)

6. Graphics and usage requirements

7. Other questions

• What information are you trying to extract/what are you looking

for in your data?

• What characteristics does your data have?

• What types of visualization mappings do you use to view your data?

• Do you view the entire dataset or just parts of it?

• How does your data affect other disciplines in a multidisciplinary

simulation?



• Will you have to look at data from other disciplines?

• Do you know anything about the other discipline and its data?

• How will it effect your data?

• How do you want to interact with the data?

• What relationships will you be interested in?

• What type of interface would you like?

• What kind of capabilities would you like the system to have?

• How does the simulation work?

• How are quantitative/statistical techniques beneficial to data anal-

ysis?

• Would you like to visualize the data as the simulation progresses?

How do you envision this happening?

C.2 User Response

The following is the response from a interview held with a structural

dynamicist regarding the development of visualization tools. The responses

are brief comments that were taken during the course of the interview.

1. Narrative description of data type (coordinate system, special properties

of the mesh, any information which explains the data type and the reason

why data are stored in specific structures)

Multidisciplinary goal: High Speed Civil Transport, unstruc-

tured grid for structures part of the code, fluids grid is struc-

tured. Structures is single grid.

Data includes node information in world coords (X,Y,Z), topol-

ogy, stress (scalar) and deformation (vector)

2. Definition of terms

Deformation, displacement - vector of new X, Y, Z positions,

not change in X, Y, Z direction

Stresses - scalar value, one per timestep (you can specify stress

in X, Y, Z direction prior to performing simulation, but does

not make sense to visualize more than one stress variable at a

time)

3. Size information (how large typical data set, how many data sets, itera-

tions)

Example- 9,000 pts, 1000s of timesteps
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4. Variable descriptions

• Variables which describe the mesh (structured/unstructured grids,

moving grids, new grid per timestep?)

- Variables which describe the mesh

X, Y, Z - real world coordinates

Topology - connection information for unstructured grid

- Variables which describe material in each zone

Can have different materials with different properties,
but not common

- Physics variables

Deformation - X, Y, Z world coordinates

Stress - scalar value, magnitude of stress at given node

- Miscellaneous data, such as time step, cycle number

Timesteps, can be lO00s of them

5. Graphics and usage requirements

Capability to print picture on screen

6. Other questions

• What information are you trying to extract/what are you looking

for in your data?

Stress levels in skin of vehicle. Looking for material fail-

ure also deformation, even though stress is typically more

important.

• What types of visualization mappings do you use to view your data?

Stress - use color maps with capability of changing range
of color tables based on data.

Deformation - amplification factor and then animation to

see how deformation progresses.

Plots - deformation at a point vs time, want to see where

flutter begins and how it progresses.

Debugging tool - look at error values to determine if code

is working correctly.

• How does your data affect other disciplines in a multidisciplinary
simulation?

Deformations will affect fluid interaction by changing the

shape of the vehicle.

• Will you have to look at data from other disciplines?
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Yes

• Do you know anything about the other discipline and its data?

No

• How will it effect your data?

To see how pressure and stress/deformation relate.

• What relationships will you be interested in?

Deformation/pressure,

Stress level history.

• What type of interface would you like?

Point and click, ability to interactively mouse around and

get data values.

• What kind of capabilities would you like the system to have?

Ability to narrow down region of interest.

Changing point of view, zoom, control color range, ampli-

tude, cutting planes to see deformation.

Ability to display while progressing through computation.
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APPENDIX D
FINAL USER INTERVIEW: VISUALIZATION ASSISTANT

Final user interviews were held upon completion of this thesis project. The two

scientists who most frequently used the system were questioned regarding their

impressions of the MDV system. The next section contains the questionnaire.

User feedback from these interviews was summarized in Section 5.1.

D.1 Questionairre

Previous Tools

• How important is visualization to you?
tool?

• Current use of Visualization Software

How often do you use it as a

- What other tools do you currently use? Do you use it often?

- What are the good points about it?

- What are the bad points about it?

• What is most important to you in a tool for viewing your data?

- Functionality (lots of different representations),

- Ease of Use (easy to generate a visualization),

- Performance (rapid generation),

- Other

MDV

• Is the interface easy-to-use? Confusing? What are your first impres-
sions?

• Does the high level of abstraction help when creating a visualization?

• Is it more natural to generate a visualization in this manner?

• Do you dislike letting the machine select the visualization technique and

viewing parameters?

• Is functionality compromised by the high level of abstraction? Does this

affect the way you work?

• What are your thoughts on the "Tasks" ? Do they seem appropriate?

• Is this a natural way to specify what you are try to get out of the data?



• Do they help or only hinder the process?

• What are your thoughts about the Output button? Is this helpful?
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